
author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Course Intro
ITEC320

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What’s the point of this course?

• “Procedural Analysis and Design”?
• What does it mean?
• Why is it important?

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Procedural Analysis and Design

• Procedural programming is a type of programming paradigm (i.e.,
style)
• Loops, if statements, procedures / functions

• Most of your prior classes focused on the Object Oriented paradigm,
using Java
• We will be using a programming language called “Rust”, which is

“more procedural” and “less OOP”
• We will make many comparisons between Rust and Java, looking at

how they are similar and different

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Procedural Analysis and Design

• For any part of a program, you must be able to:
1. Break it down into smaller parts (if possible), and recursively

analyze each part
2. Describe why it is important
3. Know how to apply it in different circumstances
4. Evaluate it in terms of correctness, efficiency, and maintainability,

and style

Never settle for “I’m not sure”.

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Procedural Analysis and Design

• Given a computing problem, you should be able to:
1. Carefully read the problem statement; clarify ambiguities
2. Brainstorm a set of approaches; identify concepts you will need
3. Write down a summary of your approach, using pseudocode
4. Evaluate whether your approach works, and fix flaws before

implementing it! Redesign as needed
5. Select appropriate programming language features for the task
6. Implement your design
7. Test your design

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Course Topics

• Static versus dynamic error checking / decision making
• Type systems
• Module design and encapsulation
• Generic programming
• Polymorphism
• Pointers and references
• Memory management
• Programming language design tradeoffs
• Testing programs
• How to think

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Our main goals

• Learn about how programming languages are designed and
structured
• Learn about different paradigms (styles) of coding
• Learn about what’s happening under the hood when your program

runs.
• Learn about strategies for code maintainability and reliability
• Learn how to problem solve, writing logically complex blocks of code

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Java Rust

• About 30 years old
• Iconic OOP language
• Memory is managed

automagically using a garbage
collector
• Slower than systems

programming languages
• High level
• Little control over low level

functionality

• About 10 years old
• Multi-paradigm language
• Memory management uses the

“ownership” model
• Low-level control
• Very fast
• Very strict compiler
• Focus on reliable programming

(secure; few vulnerabilities)
• Great for multi-threading

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

A brief history of programming
languages
Just a few of them….

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

In the beginning…

There was machine code

Each instruction was very
simple.

Raw binary. Not easily
readable.

All the power to do
basically anything you
want.

01100100110101010101010010101
01001010101010010101010101001
01010100101010101001010101010
10010101010010101010100101010
10101001010101001010101010010
10101010100101010100101010101
00101010101010010101010010101
01010010101010101001010101001
01010101001010101010100101010

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Enter assembly

• Each instruction maps to
one binary machine code
operation
• A program called an

“assembler” can convert
assembly into machine
code
• Human readable (sort of)

 ; Output all even numbers from 1 to 100

 mov ecx, 1 ; initialize our counter
loop_start:
 mov eax, ecx ; Copy the current value in ecx to eax
 and eax, 1 ; Is least significant bit is set? (odd #)
 jnz not_even ; Jump to not_even if the result non-zero

 ; Print even number
 mov eax, 4 ; syscall number for sys_write
 mov ebx, 1 ; file descriptor 1 (stdout)
 mov edx, 3 ; length of the message
 mov ecx, ecx_msg ; address of the message to print
 int 0x80 ; interrupt to invoke the syscall

not_even:
 inc ecx ; Increment our counter
 cmp ecx, 101 ; Compare ecx with 101 (end of range)
 jle loop_start ; Jump back to loop_start if ecx <= 100

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Assembly / Machine code
For Windows

Assembly / Machine code
For Linux

#include <stdio.h>

int main() {
 int i = 1;
 while (i <= 100) {
 if (i%2 0= 0) printf("%d\n", i);
 }
 return 0;
}

Compiler

The C programming language (1972)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Assembly / Machine code
For Windows

Assembly / Machine code
For Linux

Compiler

The Ada programming language (1980)

with Ada.Text_IO;

procedure Even_Numbers is
begin
 for i in 1..100 loop
 if i mod 2 = 0 then
 Ada.Text_IO.Put(Item => i);
 Ada.Text_IO.New_Line;
 end if;
 end loop;
end Even_Numbers;

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Ada vs. C

One of these days you’re
going to shoot yourself in

the foot!

At least I don’t have to jump
through a ton of hoops to

do anything

Reliability

Flexibility

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

C++ : C with OOP features (1983)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Rust : Can we make reliable and flexible programs?

Reliability goals

Expressive low-
level syntax

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

If you don’t know how things work, then
your program will probably not compile.

So you really have to understand how
stuff works to get anywhere.

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Rust in Industry

• The main use case of Rust is low-level systems programming
• Google, Meta, AWS, Huawei, and Microsoft are all strong

supporters of the Rust Foundation
• Google is using Rust for Android code
• AWS wrote “Firecracker” in Rust
• Firecracker is a light-weight VM that powers AWS Lambda, a pinnacle of

AWS cloud architecture

• Rust has recently been approved for inclusion into the Linux kernel

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Rust Resources

• Rust by example : https://doc.rust-lang.org/rust-by-example/
• The Rust book : https://doc.rust-lang.org/book/
• The Rust reference : https://doc.rust-lang.org/reference/
• The Rustonomicon : https://doc.rust-lang.org/nomicon/

We will be drawing heavily upon materials from the Rust book. I
recommend reading all of it.

https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/nomicon/

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Syllabus Discussion

• See the syllabus document posted on D2L

	Course Intro
	What’s the point of this course?
	Procedural Analysis and Design
	Procedural Analysis and Design (2)
	Procedural Analysis and Design (3)
	Course Topics
	Our main goals
	Java Rust
	A brief history of programming languages
	In the beginning…
	Enter assembly
	Slide 13
	Slide 14
	Slide 15
	C++ : C with OOP features (1983)
	Rust : Can we make reliable and flexible programs?
	Slide 18
	Rust in Industry
	Rust Resources
	Syllabus Discussion

