
Smart Pointers
Box, Rc, RefCell, and Weak

CS 320

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Quick Recap

• What are Rust’s ownership rules?

• Each chunk of data has one and only one owner, who is in charge
of deallocating the memory.
Owner can be a variable, or some other chunk of data (one which contains a pointer).

• Each chunk of data can be either:
• Borrowed mutably once (&mut) OR
• Borrowed immutably multiple times (&)
• But not both!

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Common tactics
• Pass borrowed data to functions

- Borrowing often implemented via a pointer, or some sort
 of "fat pointer" (a small struct including a pointer).
- Efficient to pass, though indirection to access.
- &mut involves aliasing; only-one-alias-allowed makes this easier.

• Implement Copy
Can #[derive(Copy)] of structs whose elements are Copyable.

• Can't copy heap-references (causes

• Drawback (and, the point): A function can't stash borrowed data
on the heap.

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Why does Rust have ownership rules?

• Rust’s ownership rules usually enforce at compile time that there are
no memory safety issues, such as:
• Buffer overflow / index out-of-range
• Dangling references

(references that point to data that has been deallocated)
• Double frees (same data is deallocated multiple times)
• Memory leaks (data that was never deallocated)

• It is able to do this at compile time because each owner simply
deallocates its data when the owner is deallocated,
and only one owner.

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Downside of ownership?

• The compiler is not perfect
• Sometimes, it rejects code that we know is perfectly fine.

(Its ownership-reasoning-system is sound, but not complete.)
• (The compiler can be a bit overzealous at times… a bit too

overprotective)

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Bending (not breaking) the rules

• Sometimes we need to bend the rules a bit to be more flexible
• Ways of bending the rules include:

• Allowing for multiple owners
• Delaying enforcement of memory safety to runtime, instead of compile

time

• We will do this using advanced features known as “smart
pointers”

• Box is an example of a smart pointer, but it has limitations
• The other smart pointers can be used, but at a cost

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Review : Box<T>

• Box<T> is the simplest type of smart pointer available in Rust
• The type T represents the “type of data owned by the Box”
• The Box owns the data it points to
• When the Box gets deallocated, it also allocates the data it points

to

• Limitations:
• A Box’s data can only have one owner
• A Box’s data can only have one &mut or multiple & but not both!

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Multiple Owners, via the Rc<T> type

• Rc stands for “ReferenceCounter”
• Rc<T> is just like Box<T>, except….

• The same T can be owned by multiple Rc simultaneously!

• Wait, doesn’t that violated Rust’s ownership rules?!?!
• It can be seen as “bending”, not “breaking”

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

How Rc<T> works….

• Create a new Rc<T> by using:
• let my_rc : Rc<String> = Rc::new(value.to_string())

• Compare to Box::new(value)

So far it looks just like a Box, but there is a new feature:

• let another_rc : Rc<String> = Rc::clone(&my_rc)

• This makes a new Rc that shares ownership of the same String!

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

How Rc works

• Each Rc shares access to a counter variable, which keeps track of the
number of Rc’s sharing ownership

• When you create an Rc using Rc::new, the “owners” counter starts at 1
• When you clone an Rc using Rc::clone, then the “owners” counter

increases by 1
• When an Rc gets deallocated, it calls its Drop trait implementation,

which decreases the “owners” counter by 1
• When the owners counter reaches 0, then the memory is cleaned up
• See : See rc_demo.rs

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Limitations of Rc

• Rc allows for multiple owners of data, but...
• You can only borrow the data immutably &
• You can’t borrow data mutably &mut

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Why can’t Rc be mutable?

• Box can easily be mutable!
• Why can’t Rc?

• Answer :
• Rc can have multiple owners
• Rust doesn’t allow for multiple mutable references
• Rust can’t allow multiple Rc’s to return mutable references because it can’t

guarantee counts at compile time!

• But sometimes Rust can be over zealous…

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Why can’t we just use Box?

• Sometimes, the Rust compiler doesn’t know something is safe,
even if we know it will be

• If Rust can’t prove that multiple &mut on the same box is
impossible, it won’t allow it.

• See box_not_multiple_mut.rs

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Solution : RefCell<T>

• RefCell is a special smart pointer that checks for multiple &mut
at runtime instead of compile time!

• It’s the same as Box, except for it delays the multiple &mut
checking until runtime

• It does this by keeping a count of all the & and &mut references to
its data
• If it finds that a &mut and another reference are used simultaneously, it

will panic!

• Important : RefCell still enforces Rust’s ownership, but it does it
at runtime instead of compile time

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

RefCell example

• See ref_cell_demo.r
• Compare this with the box_not_multiple_mut.rs code from earlier.
• This one works, but it could panic at runtime!

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Limitations of RefCell

• RefCell is enforced at runtime
• If Rust can enforce the constraints at compile time, use Box instead

• RefCell, like Box, only allows for one owner…
• What if we want the multiple owners and runtime enforcement of

reference counts?

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Interior Mutability Design Pattern

• What if we want the multiple owners and runtime enforcement of
reference counts?

• Solution:
• Use the type Rc<RefCell<T>>
• Rc allows for multiple owners
• RefCell is a single chunk of memory shared by multiple Rc owners
• The single RefCell keeps track of the number of & and &mut attached to it

so as to enforce Rust’s ownership rules at runtime

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Beware of Memory Leaks

• Most of the time, memory leaks in Rust are impossible
• However, if you use things like Rc<RefCell<T>>, then it’s

possible to introduce a memory leak
• Each chunk of data can have multiple owners
• A cycle is never deallocated…
• This can be resolved using yet another special smart pointer known as
Weak<T>, but this is beyond our current scope…

• You’ll encounter this if you try to make a doubly linked list or a graph data
structure (anything with cycles)

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

Summary
Rust has a whole lot of “smart pointers”
• Box<T> : Most basic; one owner, enforces ownership rules at compile

time!
• Rc<T> : Allows for multiple owners, avoids memory safety issues at

compile time (still very safe), but deallocation handled at runtime
(slightly less efficient than Box<T>)

• RefCell<T> : Like Box, there is just one owner, but it doesn’t not
enforce ownership rules involving &mut and & counts at compile time.
Instead, enforces these at runtime

• Rc<RefCell<T>> : Allows for a combination of multiple owners (Rc)
and runtime enforcement of ownership (RefCell)

• Weak<T> : Variant of Rc<T> that will not prevent data from being
deallocated; can be used to avoid memory leaks from cycles with
Rc<T>

author nlahn@radford.edu; modified by
ibarland@radford.edu. CC-BY 4.0

	Slide 1: Smart Pointers
	Slide 2: Quick Recap
	Slide 3: Common tactics
	Slide 4: Why does Rust have ownership rules?
	Slide 5: Downside of ownership?
	Slide 6: Bending (not breaking) the rules
	Slide 7: Review : Box<T>
	Slide 8: Multiple Owners, via the Rc<T> type
	Slide 9: How Rc<T> works….
	Slide 10: How Rc works
	Slide 11: Limitations of Rc
	Slide 12: Why can’t Rc be mutable?
	Slide 13: Why can’t we just use Box?
	Slide 14: Solution : RefCell<T>
	Slide 15: RefCell example
	Slide 16: Limitations of RefCell
	Slide 17: Interior Mutability Design Pattern
	Slide 18: Beware of Memory Leaks
	Slide 19: Summary

