
Structs, Polymorphism,
Dynamic Dispatch

Dr. Nathaniel Lahn: ITEC 320

Questions

• What is a class in Java?
• What is an interface in Java?
• What is polymorphism?
• How do we support similar functionality in Rust?
• How is polymorphism supported by the ownership model?

What is a class in Java?

What is a class in Java?

• A class in Java is trying to accomplish two things simultaneously:
• A class is a data type, which includes:

• A set of possible values (data fields)
• A set of possible operations (methods)

• A class is also a module
• You can import a class
• public / private visibility
• namespacing

• In Rust, we split these ideas up into structs and modules

Structs in Rust

struct Rectangle {
 width: u32,
 height: u32,
}

The primary purpose of a struct in Rust is to describe a data type that
involves multiple fields.

Field Visibility

• You can access struct fields using “.” notation, just like in Java
• But only if it is accessible…

• It’s like Java : There are rules about visibility modifiers
• By default, struct fields are private

• You can make fields public using the “pub” keyword below:

struct Rectangle {
 pub width: u32,
 pub height: u32,
}

Implications of private

• In Java, what does “private” mean?

Implications of private

• In Java, what does “private” mean?
• It’s only directly accessible inside the class. Anyone who wants to access the

data outside the class must do so indirectly.

• In Rust, what does “private” mean?
• It’s only accessible within the current module. Remember, structs are not

modules in Rust
• We’ll talk about how to create modules later, but for now, realize that every

program we’ve looked at has exactly one (default) module

Struct Functions Can Be Separate

struct Rectangle {
 width: u32,
 height: u32,
}

fn area(r : &Rectangle) -> u32 { // Note that the & is necessary for borrowing
 return r.width * r.height;
}

Method Syntax Vs. Function Syntax

• Imagine that we have a rectangle variable named “rectangle”
• Java allows us to call methods like this:

• double area = rectangle.area();

• However, to call our area function in Rust, we would use:
• let area : f64 = area(&rectangle);

• Either way, “area” is a sort of “function”, but…
• Java passes the rectangle as an implicit parameter
• Rust passes the rectangle as an explicit parameter

• In reality, they are doing the same sort of thing – calling a function.

Methods in Rust

• In Rust, a method is a special type
of function that is associated with
a struct implementation block
• To write a Rust method, write an

impl {} block like so:
impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

Methods in Rust

• In Rust, a method is a special type
of function that is associated with
a struct implementation block
• To write a Rust method, write an

impl {} block like so:
impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

• An implementation block is a
way to list functions that are
associated with a struct type
and have an instance of that
type as the first parameter

Method Vs. Functions in Rust

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

• What does &self mean?
• We can replace it with this:
• fn area(self : &Self) -> u32

• What does Self mean? We can
replace it with:
• fn area(self : &Rectangle) -> u32

• self (lowercase) means “the name of the first parameter”
• Self (uppercase) means “the type of the struct we are implementing”
• self has type Self

Polymorphism

• Rust is not technically an object oriented programming language
• (Because it doesn’t allow for inheritance)

• However, Rust does allow for polymorphism
• What exactly is polymorphism?
• How does Rust polymorphism compare to Java polymorphism?

• Let’s look at Java first….
• See Polymorphism.java
• Then, see the corresponding Rust example on D2L.

Polymorphism in Rust

• Requirements:
• Two or more types that share a similar interface, but have different

implementations for those interfaces
• A single trait that describes the shared interface
• Multiple implementation blocks (impl) that describe the precise

implementations of the interface (one per type that implements the trait)
• Whenever the Trait is know, but not the underlying type, then you must use

“Box<dyn trait_name>” as the data type
• Ex: Vec<Box<dyn Shape>>

• Why all the hoopla?
• Because memory diagramming See the example diagram on D2L.

Structs vs. Classes

• Java classes are like structs except:
• Java classes have methods inside them

• It’s like methods are a part of the class
• Rust structs have methods in a separate implementation block

• It’s like methods are associated with a type, but they can be seen as “syntactic sugar” for
what are really standalone functions.

• Also, as mentioned before, Java classes are also modules, while Rust
separates out the idea of a module and a struct.
• More on Modules in Rust later…

Interfaces vs. Traits

• Rust traits look a lot like Interfaces in Java
• Similar because: They both describe “interfaces”, in the general sense

of the word
• An interface is simply a set of function signatures that describe how two parts

of a program interact
• Interfaces do not need to be “object oriented”

• Different because : Java Interfaces are also types, while Rust traits are
just interfaces
• Similar to how classes in Java are also modules, while Rust structs are

just types
• Yes, it’s confusing --- blame Java

	Structs, Polymorphism, Dynamic Dispatch
	Questions
	What is a class in Java?
	What is a class in Java? (2)
	Structs in Rust
	Field Visibility
	Implications of private
	Implications of private (2)
	Struct Functions Can Be Separate
	Method Syntax Vs. Function Syntax
	Methods in Rust
	Methods in Rust (2)
	Method Vs. Functions in Rust
	Polymorphism
	Polymorphism in Rust
	Structs vs. Classes
	Interfaces vs. Traits

