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Questions

• What is a class in Java?
• What is an interface in Java?
• What is polymorphism?
• How do we support similar functionality in Rust?
• How is polymorphism supported by the ownership model?



What is a class in Java?



What is a class in Java?

• A class in Java is trying to accomplish two things simultaneously:
• A class is a data type, which includes:

• A set of possible values (data fields)
• A set of possible operations (methods)

• A class is also a module
• You can import a class
• public / private visibility
• namespacing

• In Rust, we split these ideas up into structs and modules



Structs in Rust

struct Rectangle {
    width: u32,
    height: u32,
}

The primary purpose of a struct in Rust is to describe a data type that 
involves multiple fields. 



Field Visibility

• You can access struct fields using “.” notation, just like in Java
• But only if it is accessible…

• It’s like Java : There are rules about visibility modifiers
• By default, struct fields are private

• You can make fields public using the “pub” keyword below:

struct Rectangle {
    pub width: u32,
    pub height: u32,
}



Implications of private

• In Java, what does “private” mean?



Implications of private

• In Java, what does “private” mean?
• It’s only directly accessible inside the class. Anyone who wants to access the 

data outside the class must do so indirectly.

• In Rust, what does “private” mean?
• It’s only accessible within the current module. Remember, structs are not 

modules in Rust
• We’ll talk about how to create modules later, but for now, realize that every 

program we’ve looked at has exactly one (default) module



Struct Functions Can Be Separate

struct Rectangle {
    width: u32,
    height: u32,
}

fn area(r : &Rectangle) -> u32 {  // Note that the & is necessary for borrowing
    return r.width * r.height;
}



Method Syntax Vs. Function Syntax

• Imagine that we have a rectangle variable named “rectangle”
• Java allows us to call methods like this:

• double area = rectangle.area();

• However, to call our area function in Rust, we would use:
• let area : f64 = area(&rectangle);

• Either way, “area” is a sort of “function”, but…
• Java passes the rectangle as an implicit parameter
• Rust passes the rectangle as an explicit parameter

• In reality, they are doing the same sort of thing – calling a function.



Methods in Rust

• In Rust, a method is a special type 
of function that is associated with 
a struct implementation block
• To write a Rust method, write an 

impl {} block like so:
impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }
}



Methods in Rust

• In Rust, a method is a special type 
of function that is associated with 
a struct implementation block
• To write a Rust method, write an 

impl {} block like so:
impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }
}

• An implementation block is a 
way to list functions that are 
associated with a struct type 
and have an instance of that 
type as the first parameter



Method Vs. Functions in Rust

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }
}

• What does &self mean?
• We can replace it with this:
• fn area(self : &Self) -> u32

• What does Self mean? We can 
replace it with:
• fn area(self : &Rectangle) -> u32

• self (lowercase) means “the name of the first parameter”
• Self (uppercase) means “the type of the struct we are implementing”
• self has type Self



Polymorphism

• Rust is not technically an object oriented programming language
• (Because it doesn’t allow for inheritance)

• However, Rust does allow for polymorphism
• What exactly is polymorphism?
• How does Rust polymorphism compare to Java polymorphism?

• Let’s look at Java first….
• See Polymorphism.java
• Then, see the corresponding Rust example on D2L. 



Polymorphism in Rust

• Requirements:
• Two or more types that share a similar interface, but have different 

implementations for those interfaces
• A single trait that describes the shared interface
• Multiple implementation blocks (impl) that describe the precise 

implementations of the interface (one per type  that implements the trait)
• Whenever the Trait is know, but not the underlying type, then you must use 

“Box<dyn trait_name>” as the data type
• Ex:   Vec<Box<dyn Shape>>

• Why all the hoopla?
• Because memory diagramming  See the example diagram on D2L. 



Structs vs. Classes

• Java classes are like structs except:
• Java classes have methods inside them

• It’s like methods are a part of the class
• Rust structs have methods in a separate implementation block

• It’s like methods are associated with a type, but they can be seen as “syntactic sugar” for 
what are really standalone functions.

• Also, as mentioned before, Java classes are also modules, while Rust 
separates out the idea of a module and a struct.
• More on Modules in Rust later…



Interfaces vs. Traits

• Rust traits look a lot like Interfaces in Java
• Similar because: They both describe “interfaces”, in the general sense 

of the word
• An interface is simply a set of function signatures that describe how two parts 

of a program interact
• Interfaces do not need to be “object oriented”

• Different because : Java Interfaces are also types, while Rust traits are 
just interfaces
• Similar to how classes in Java are also modules, while Rust structs are 

just types
• Yes, it’s confusing --- blame Java
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