
author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Variables, Types, Type
Checking

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Today

• Defining a few basic concepts that have to do with variables / types
• These apply to many different languages

• Explicit vs. Implicit. Conversion
• Static vs. Dynamic
• Inferred types
• Immutable vs. Mutable

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a variable?

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a variable?

• A named bucket (bucket holds a value; name is on outside of bucket)
• Your code mentions the name in an expression; the computer gets

the value from the corresponding bucket.
• Your code can change the bucket's value with assignment (e.g. n =
2+3);
general syntax: <Var> = <Expr>;
• In rust, every variable has a type;

the type determines the bucket's shape (what type of values it can
hold)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a type?

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a type?

• A type is the set of possible values a variables can hold.
• Internally, compiler knows the size_of each type (the size of the

bucket -- how many bytes are needed to put one on the stack or heap).
• Internally: A type also implies that the bits representing it will be

interpreted in a certain way.
• Example : let mut x : i32 = 4;
• The value of x might change, but we know it’s always holding some i32.
• The actual data stored in this variable is 32 bits (here, 00…0100).
• Interpret those 32 bits as two’s complement.

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Declaring Variables

• Name followed by type:

• let x : i32 = 3;
println!("x holds {} right now.", x);
• let isHappy : bool = true;
• let numStudents : u16 = 18;

• General syntax:
let <Id> : <Type> = <Expr>;

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Declaring Variables (cont.)
• Just as in Java, it's allowed to declare a variable w/o initializing it.
But it must be initialized (later) before its first use.
• Good style: always initialize.

This is required for this course.
(Some languages don't even allow declare-without-initialize!)

• If initial-value depends on if, you can use if-as-expression:
let x : i32 = if a>b {a} else {b};

• In general if is an expression in rust, not a mere statement.
So it can be used as part of bigger expressions:
let x : i32 = 3 + (if a>b {a} else {b})*17; !!

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a variable? (internal considerations)

• Internally: name turns into a memory-location after compiling,
perhaps as an offset from the current stack-frame.
• Internally: the type determines the size of the bucket (how many

bytes the item fills, beyond the starting-memory-location)
• Thus at compile-time, rust knows how many bytes are needed for the

stack of every function-call. (Very important, for compiling!)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

What is a type? (cont.)

• Each type also has a corresponding set of operations
• These may be defined as part of the type definition, or separately.
• Usually, the operations are functions ("methods"), but can also be operators

(which are morally functions, but called infix rather than prefix).

• Ex: A Java class has:
• Fields: the sub-types comprising the overall class-type.
• Methods: defines the allowed operations on objects of this class/type.

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Immutable vs. Mutable Variables

• By default, all Rust variables are immutable
• That means you can’t assign a new value to them
• To make a mutable version of a variable, use the mut keyword

• This is the opposite approach from Java, where variables are mutable
unless you add a keyword: final.
• Immutable variables are preferred when possible –

they make debugging much easier!

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Shadowing
• Rust allows “shadowing” of variables:

two different variables that happen to have the same name.

• The two variables might even have a different type
• This is not somehow changing the type or mutability of a variable:
• Rather, an entirely new variable is made with the same name
• The old variable is unusable: we say it is shadowed

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Implicit vs. Explicit Conversion
• Conversion: Replace a value of one type with a value of another type

• Explicit conversion : You have to explicitly tell the program to do the
conversion
• Sometimes known as “type casting”
• It's a function (input: bits-for-int; return: bits-for-double);

sometimes uses special syntax instead of function-call.

• Implicit conversion : The conversion-function is called automatically,
without you having to say anything
• Sometimes known as type “coercion”

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Examples:

• Java uses type coercion for String addition (and for Strings, in general):

• "Wall is " + Math.sqrt(25) + "ft."
What implicit conversion(s) are happening?

•

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Examples:

• Java uses type coercion for String addition (and for Strings, in general):

• "Wall is " + Math.sqrt(25) + "ft."

• "Wall is " + doubleToString(Math.sqrt(int2double(25))) + "ft."
• Java privileges Strings and arrays. Other languages are far more lax:

E.g. php: an empty array can be false in a boolean context, as can an empty
string or 0 (but not "0" even though it "0" gets coerced to 0 in numeric
contexts).

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Examples:

• Rust: Generally requires most conversions to be explicit

• To do any operations between different types, must make sure the
types match first
• Can use the From / Into functions

Error : Can’t implicitly convert
from integer to floating point

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Strong vs. Weak Typing

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Strong vs. Weak Typing

• People use “strong” vs. “weak” to mean different things:
• Sometimes "few coercions" vs. "lots of coercions";
• Sometimes "statically typed" vs "dynamically typed"

• Avoid using these terms
• Instead of strong/weak, it’s better to talk about implicit vs. explicit

conversion

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Rust is Statically Typed

• Variables in Rust are statically associated with a type
That means:
• The type is known at compile time
• The type can never change
• Thus Rust always knows the size needed to hold or pass that

variable.

• There are a few exceptions involving polymorphism, but they are rare (and complicated)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Comparison: Static Vs. Dynamic typing

• Generally, statically handling something is faster and safer
• Faster : Fewer checks needed at runtime
• Safer : Error detected when program is compiled; no debugging needed.
 (That is: if it compiles, the compiler has proven there are no type-errors!)

• Dynamic handling is sometimes necessary though for flexibility.
An error might lurk, if your unit-tests weren't thorough.

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Rust examples

• Can’t add floats to
integer
• Can’t add integers

to strings
• Can’t convert

between floats
and integers,
unless you use
explicit conversion
(like From / Into)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Static Checking vs. Dynamic Checking
• Static checking done at compile-time
• Examples: Ada, Java, Rust
• In Java:

• String str = "abc";
• str = 5 // Throws an error because str has type String, and can only hold String

• Dynamic checking done at run-time
• Example: Python, Lisp

• str = "abc"
• str = 2 // Legal in python
• str.split() // Calling string method on int not legal; not detectable until run-time

• Requires checks at run-time, hence slower runtime (2x-10x … may not matter)

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Java polymorphism can be dynamic

• Check out dynamic.java

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Inferred vs. Explicit Types

• Rust allows for type inference
• Examples

• let whats_my_type = 4;
• Automatically inferred as i32

• let whats_my_type = 1 == 1 || 4 < 2;
• Automatically inferred as bool

• If it’s ambiguous, Rust compiler won’t let you do it

author nlahn@radford.edu; modified by ibarland@radford.edu.
 CC-BY 4.0

Inferred Types are

• VSCode’s Rust Analyzer Plugin lists the inferred types in dark yellow
• These are not actually part of the program text
• They are placed there in the GUI automagically by the editor

• Double clicking the type will actually add it to the text
• I recommend that you explicitly write the type until you understand

Rust well

displayed by VSCode

	Variables, Types, Type Checking
	Today
	What is a variable?
	What is a variable? (2)
	What is a type?
	What is a type? (2)
	Declaring Variables
	Declaring Variables (cont.)
	What is a variable? (internal considerations)
	What is a type? (cont.)
	Immutable vs. Mutable Variables
	Shadowing
	Implicit vs. Explicit Conversion
	Examples:
	Examples: (2)
	Examples: (3)
	Strong vs. Weak Typing
	Strong vs. Weak Typing (2)
	Rust is Statically Typed
	Comparison: Static Vs. Dynamic typing
	Rust examples
	Static Checking vs. Dynamic Checking
	Java polymorphism can be dynamic
	Inferred vs. Explicit Types
	Inferred Types are

