CSE 543 - Computer Security (Fall 2004)

Lecture 17 - Network Security

November 4, 2004

URL: http://www.cse.psu.edu/~cg543/

Coms. Security: the threats

- Adversary 1: some unauthorized entity attempting to gain access to host resource
- Adversary 2: an malicious intermediary passively listening on the network for sensitive data

Communications Security

- A host wants to establish a secure channel to remote hosts over an untrusted network
 - Not Login end-users may not even be aware that protections in place
 - Remote hosts may be internal or external
- The protection service must ...
 - Authenticate the end-points (each other)
 - Negotiate what security is necessary (and how)
 - Establish a secure channel
 - Process the traffic between the end points

IPsec (not IPsec!)

- Host level protection service
 - IP-layer security (below TCP/UDP)
 - De-facto standard for host level security
 - Developed by the IETF (over many years)
 - Now available in most operating systems
 - E.g., Available in XP, OS X, Linux, BSD*, ...
 - Implements a wide range of protocols and cryptographic algorithms
- Provides
 - Confidentiality, integrity, authenticity, replay protection,
 DOS protection

IPsec Protocols and the stack

- IPsec puts the two main protocols in between IP and the other protocols
 - AH authentication header
 - ESP encapsulating security payload

- Tunnel vs. transport?
- Other function provided by external protocols and architectures
 - Key management/authentication
 - Policy

IPsec Protocol Suite

Policy/ Configuration Managent

(SPS) Security Policy System

Key Management

Manual

(IKE) Internet Key Exchange

Packet Processing

(ESP)
Encapaulating
Security Payload

(AFI)
Authentication
Eleader

Internet Key Exchange (IKE)

- Built on of ISAKMP framework
- Two phase protocol used to establish parameters and keys for session
 - Phase 1: negotiate parameters, authenticate peers, establish secure channel
 - Phase 2: Establish a security association (SA)
- The details are unimaginably complex
- The SA defines algorithms, keys, and policy used to secure the session

IPsec: Packet Handling (Bump ...)

IPsec AH Packet Format

IPv4 AH Packet Format

IPv4 Header	Authentication Header	Higher Level
		Protocol Data

AH Header Format

Next Header	Length	Reserved		
Security Parameters Index				
Authentication Data (variable number of 32-bit words)				

IPsec Authentication

- SPI: (spy) identifies the security association for this packet
- Type of crypto checksum, how large it is, and how it is computed
- Really the policy for the packet
- Authentication data
- Hash of packet contents include IP header as as specified by SPI
- Treat transient fields (TTL, header checksum) as zero
- Keyed MD5 Hash is default

IPsec ESP Packet Format

IPv4 ESP Packet Format

ESP Header Format

Security Association Identifier

Opaque Transform Data, variable length

DES + MD5 ESP Format

Practical Issues and Limitations

- IPsec implementations
 - Often not compatible (ungh.)
 - Large footprint
 - resource poor devices are in trouble
 - New standards to simplify (e.g, JFK)
 - Slow to adopt new technologies

Issues

- IPsec tries to be "everything for everybody at all times"
 - Massive, complicated, and unwieldy
- Policy infrastructure has not emerged
- Large-scale management tools are limited (e.g., CISCO)
- Often not used securely (common pre-shared keys)

DNS - The domain name system

- DNS maps between IP address (12.1.1.3) and domain and host names (ada.cse.psu.edu)
 - How it works: the "root" servers redirect you to the top level domains (TLD) DNS servers, which redirect you to the appropriate sub-domain, and recursively
 - Note: there are 13 "root" servers that contain the TLDs for .org, .edu, and country specific registries (.fr, .ch)

DNS Vulnerabilities

- Nothing is authenticated, so really the game is over
 - You can not really trust what you hear ...
 - But, many applications are doing just that.
 - Spoofing of DNS is really dangerous
- Moreover, DNS is a catalog of resources
 - Zone-transfers allow bulk acquisition of DNS data
 - and hence provide a map for attacking the network
- Lots of opportunity to abuse the system
 - Relies heavily on caching for efficiency -- cache pollution
 - Once something is wrong, it can remain that way in caches for a long time (e.g., it takes a long time flush)
 - Data may be corrupted before it gets to authoritative server

DNS-sec

- A standard-based (IETF) solution to security in DNS
 - Prevents data spoofing and corruption
 - Public key based solution to verifying DNS data
 - Authenticates
 - Communication between servers
 - DNS data
 - Public keys (a bootstrap for PKI?)

DNSsec Mechanisms

- TSIG: transaction signatures protect DNS operations
 - Zone loads, some server to server requests (master -> slave), etc.
 - Time-stamped signed responses for dynamic requests
 - A misnomer -- it currently uses shared secrets for TSIG
 (HMAC) or do real signatures using public key cryptography
- SIG0: a public key equivalent of TSIG
 - Works similarly, but with public keys
 - Not as popular as TSIG, being evaluated

Note: these mechanisms assume clock sync. (NTP)

DNSsec Mechanisms

- Securing the DNS records
 - Each domain signs their "zone" with a private key
 - Public keys published via DNS
 - An indirectly signed by parent zones
 - Ideally, you only need to sign root, and follow keys down the hierarchy

DNSsec challenges

- Incremental deployability
 - Everyone has DNS, can't assume a flag day
- Resource imbalances
 - Some devices can't afford real authentication
- Cultural
 - Most people don't have any strong reason to have secure DNS (\$\$\$ not justified in most environments)
 - Lots of transitive trust assumptions (you have no idea how the middlemen do business)
- Take away: DNSsec will be deployed, but it is unclear whether it will be used appropriately/widely

Practical Issues and Limitations

VPNs

- Great for extending network
- Most are built on IPsec
- VLANs provide physical separation

Issues

- VPNs extend you network to many endpoints
 - Little control over hosts outside your perimeter
- Key Management often poorly managed
 - E.g., company "X" single key problem
 - Leads to complex host ejection (stolen laptop)

Address Resolution Protocol (ARP)

- Protocol used to map IP address onto the physical layer addresses (MAC)
 - 1) ARP request: who has x.x.x.x?
 - 2) ARP response: me!
- Policy: last one in wins
- Used to forward packets on the appropriate interfaces by network devices (e.g., bridges)

Q: Why would you want to spoof an IP address?

ARP poisoning

- Attack: replace good entries with your own
- Leads to
 - Session hijacking
 - Man-in-the-middle attacks
 - Denial of service, etc.

- Lots of other ways to abuse ARP.
- Nobody has really come up with a good solution
 - Except smart bridges, routers that keep track of MACs
- However, some not worried
 - If adversary is in your perimeter, you are in big trouble
 - You should never should validate the source of each pack independently (e.g., via IPsec)

ARP Security Solutions

Not many ... but people are trying

Homework: How would you fix it?

Homework (due 11/16)

- Solve the ARP security problem.
 - Issues: what are the security problems in ARP (you probably need to look up related works)
 - Constraints: what are the constraints of the problem
 - Solutions: what does the design space look like, which solutions appear to be best and why
- Note: pretend you are writing to the security expert in a company. You
 need to convince him (Prof. McDaniel) that the problem is worth solving,
 that you understand the constraints, and that your solution will work.
- You are REQUIRED to work alone
- 2 Pages of Latex formatted (Word will receive 0%)
- You have all degrees of freedom, you choose best solution