Wireless Networks 5G Technologies

Table of Contents

- Why 5G Communications?
- Possible Applications using 5G
- Network Fundamentals
- Before 5G Communications
- 5G Communications
- Security Issues
- Summary

Why 5G Communications?

Why 5G Communications?

- eMBB (Enhanced Mobile Broadband)
 - Faster Throughput and Bandwidth
- URLLC (Ultra-reliable and Low Latency Communication)
 - 4G is not enough for real-time response.
 - Uninterrupted Services
- mMTC (massive Machine Type Communication)
 - Exponentially Increasing # of Users/Devices
- More Flexible Architecture
- Intelligent Network
- Energy Efficiency
- More Secure than 4G

5G Capability Perspectivesfrom the ITU-R IMT-2020 Vision Recommendation

Enhancement of key capabilities from IMT-Advanced to IMT-2020

The importance of key capabilities in different usage scenarios

The values in the figures above are targets for research and investigation for IMT-2020 and may be revised in the light of future studies. Further information is available in the IMT-2020 Vision Recommendation (Recommendation ITU-R M.2083)

Possible Applications using 5G

5G Usage Scenarios (1)

5G Usage scenarios

Enhanced Mobile Broadband

Massive Machine Type Communications

5G Usage Scenarios (2)

European Telecommunications Standards Institute (ESTI), https://www.etsi.org/technologies/5G

Network Fundamentals

What is Computer Networks?

- A collection of autonomous computers interconnected by a single or multiple technologies
 - Interconnected via:
 - Copper wire
 - Fiber optics
 - Microwaves
 - Infrared
 - Communication satellites, etc.

What is a protocol?

- Communications between computers requires very specific unambiguous rules
- A protocol is <u>a set of rules</u> that governs how two or more communicating parties are to interact
 - Internet Protocol (IP)
 - Transmission Control Protocol (TCP)
 - HyperText Transfer Protocol (HTTP)
 - Simple Mail Transfer Protocol (SMTP)

What is a communication network?

- The equipment (hardware & software) and facilities that provide the basic communication service
- Virtually invisible to the user; Usually represented by a cloud
 - Equipment
 - Routers, servers, switches, multiplexers, hubs, modems, ...
- Facilities
 - Copper wires, coaxial cables, optical fiber
 - Ducts, conduits, telephone poles ···

How are communication networks designed and operated?

Communication Network Architecture

- Network architecture: the plan that specifies how the network is built and operated
- Architecture is driven by the network services
- Overall communication process is complex
- Network architecture partitions overall communication process into separate functional areas called layers

OSI Reference Model

Application

Application Layer

Presentation Layer

> Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

OSI Reference Model & TCP/IP Protocol Stack

OSI 7 Layers TCP/IP Protocol

Headers & Trailers

Layers, Services & Protocols

Connectionless & Connection-Oriented Services

Connection-Oriented

- Three-phases:
 - 1. Connection setup between two SAPs to initialize state information
 - 2. SDU transfer
 - 3. Connection release
- e.g. TCP, ATM

Connectionless

- Immediate SDU transfer
- No connection setup
- e.g. UDP, IP

Segmentation & Reassembly

Segmentation

Reassembly

Multiplexing

Multiplexing

FDM (Frequency Division Multiplexing)

TDM (Time Division Multiplexing)

Before 5G Communications

Before 5G Communications

Before 5G Communications

Comms	brief	10	â			2G		3	3G	4G		5G
Technology standard	AMPS	NMT	TACS	C-Netz	GSM	D-AMPS	IS-95 A	UMTS	CDMA2000	LTE		NR
Digital or not?	Analogue		Digital		Dig	gital	Digital		Digital			
Launch year (approx.)	~1980		~1990		~2000		~2010		~2020			
					GPRS			HSPA	EVDO Rev. 0	LTE-Adva	nced	
Enhancements		Commsbrie	f		IS-95 B	HSPA+	EVDO Rev. A	LTE-Pro Comms	brief			
				EDGE			EVDO Rev. B					
Services	Voice only Voice + SMS + Data (Mobile Internet)											
					oppo	47	4.0.1.	UMTS	2 Mbps	LTE	200 M	
					GPRS	1/	1.2 kbps	HSPA	14.4 Mbps	LTE	300 Mbps	
					EDGE	38	4 kbps	HSPA+	42 Mbps			
Peak download speeds		-			IS-95	A 14	.4 kbps	CDMA2000	153 kbps	LTE-A	1 Gbps	10 Gbps
Special								EVDO 0	2.4 Mbps			
Commsbrief		IS-95 B 115 kbps		.5 kbps	EVDO A	3.1 Mbps	LTE-Pro	3Gbps				
001111110								EVDO B	14.7 Mbps			

Summary of 1G, 2G, 3G, 4G and 5G network technologies

5G Communications

5G Standard and Specification

Region		Organization	Specifications	Time line
	F©	FCC : FEDERAL COMMUNICATIONS COMMISSION	Code of Federal Regulations(CFR) Title 47 Part 2, Part 22, Part24, Part27 (FR1) Title 47 Part 2, Part30 (FR2)	Available
	(F)	ARIB : Association of Radio Industries and Businesses	Technical Regulations Conformity Certification(TRCC) Article 2-1-11-30 (FR1) Article 2-1-11-32 (FR2)	Available
0	Œ	ETSI : European Telecommunications Standards Institute	Radio Equipment Directive(RED) ETSI EN 301 908-25 (FR1, FR2) (Publication Target Feb. 2021)	Publication Target Feb. 2021
*	СТА	CTA : China Type Approval Network Access License	Test requirements follow 3GPP TS 38.521-1/3GPP TS 38.521-3, but test with specific channel. Focus on "Transmitter" and "Receiver" part.	under approval (*1)
400	[©	RRA : National Radio Research Agency	KS X 3270:2019 (FR1) KS X 3271:2019 (FR2)	Available (*1)

The 3rd Generation Partnership (3GPP) Specifications

2G	Phases 1, 2, 2+, Releases 97, 98
3G	Releases 99, Release 4, 5, 6, 7
4G	Releases 8, 9, 10, 11, 12, 13, 14
5G	Releases 15, 16, 17, 18, 19

5G Capability Perspectivesfrom the ITU-R IMT-2020 Vision Recommendation

Enhancement of key capabilities from IMT-Advanced to IMT-2020

The importance of key capabilities in different usage scenarios

The values in the figures above are targets for research and investigation for IMT-2020 and may be revised in the light of future studies. Further information is available in the IMT-2020 Vision Recommendation (Recommendation ITU-R M.2083)

5G Network Architecture

5G NR (New Radio) Architecture

4G RAN

BBU: Baseband Unit DU: Distributed Unit

CU: Central Unit

PHY: Physical Layer

MAC: Medium Access Control Layer

PDCP: Packet Data Convergence Protocol

RRC: Radio Resource Control

5G RAN

Radio Unit

Lower PHY

L1 Analog to Digital / Digital to Analog

Distributed Unit

Higher PHY

MAC

RLC

Modulation, Coding and Rate Matching

L2 Scheduling, HARQ (Hybrid Automatic Repeat Request), Multiplexing/Demultiplexing

ARQ, Segmentation

Central Unit

PDCP

SDAP

RRC

Robust Header Compression (RoHC), Security

QoS Flow Handling

L3 Public Land Mobile Network (PLMN) ID selection, SIB, Mobility, 5GC Connect

PHY: Physical Layer

MAC: Medium Access Control Layer

PDCP: Packet Data Convergence Protocol

RRC: Radio Resource Control

5G Core Architecture

5G Core Architecture

Frequency Bands & SUL Coverage

Frequency Bands

Hua Shou, "New Features in the Next Release of 5G New Radio," https://ofinno.com/wp-content/uploads/2020/08/OFNO_White_Sheet_082120.pdf

SUL (supplementary Uplink) Coverage

Numerology: Subcarrier Spacing (SPS)

5G NR frame structure with multiple numerology parameters

Supported Transmission Numerology

μ	$\Delta f = 2^{\mu} \cdot 15[\text{kHz}]$	Cyclic prefix	Supported for data	Supported for synch
0	15	Normal	Yes	Yes
1	30	Normal	Yes	Yes
2	60	Normal, Extended	Yes	No
3	120	Normal	Yes	Yes
4	240	Normal	No	Yes

Jose Luis Carcel, Belkacem Mouhouche, Manuel Fuentes, and Edurado Garro, "IMT-2020 Key Performance Indicators: Evaluation and Extension Towards 5G New Radio Point-to-Multipoint," IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2019, DOI: 10.1109/BMSB47279.2019.8971948

OFDMA

(Orthogonal Frequency Division Multiple Access)

Frequency-Time Representative of an OFDM signal

Combined time/frequency domain view of OFDM signal. (Image: Keysight Technologies) https://www.5gtechnologyworld.com/the-basics-of-5gs-modulation-ofdm/

Modulation

Modulation	Bits/symbol	DL	UL		
scheme	bits/symbol	CP-OFDM	CP-OFDM	DFT-S-OFDM	
π/2-BPSK	1			Y	
QPSK	2	Υ	Υ	Υ	
16QAM	4	Y	Υ	Y	
64QAM	6	Υ	Υ	Υ	
256QAM	8	Υ	Υ	Υ	

Duplex Schemes

TDD

 Uplink and downlink transmission use the same carrier frequency and are separated in different time slices

• FDD

Uplink and downlink transmission use the different frequencies simultaneously

Network Slicing

Deployment Options:

Standalone vs. Non-Standalone

Antenna: MIMO (Multiple Input Multiple Output)

Spatial Diversity: Improve Coverage

Spatial Multiplexing: Higher Data Rate (Spectral Efficiency)

- => mMIMO (massive MIMO)
 - Standard MIMO usually uses 2 or 4 antennas.
 - mMIMO uses as many as 96 to 128 antennas.

Tx arrays	Rx arrays	MIMO	
2	2	2*2	
4	2	4*2	
2	4	2*4	
4	4	4*4	
8	8	8*8	

Beaming

Spatial Multiplexing - MIMO

Static Beaming

Dynamic Beaming

Beamforming and Coverage

Beamforming and Coverage

5G Security Issues

[References] https://en.wikipedia.org/wiki/5G

- The attack surface is getting bigger
 - <u>loT</u> devices, enabled by 5G technology, from 7 billion in 2018 to 21.5 billion by 2025:
 - (ex) the capacity for DDoS attacks, cryptojacking, and other cyberattacks
 - "immature and insufficiently tested," and "enables the movement and access of vastly higher quantities of data, and thus broadens attack Surfaces" Reference: "A Formal Analysis of 5G Authentication," ETH Zurich, the University of Lorraine and the University of Dundee, October 18, 2018
- Fears of potential espionage of users of Chinese equipment vendors

• Electromagnetic Interference

"The Clean Network"

- Launched in August, 2020
 - the U.S. State Department launched "<u>The Clean Network</u>" as a U.S. government-led, bi-partisan effort to address:
 - "the long-term threat to data privacy, security, human rights and principled collaboration posed to the free world from authoritarian malign actors".
- More than 60 nations had publicly committed by December 2020
 - The United States announced that:
 - more than 60 nations, representing more than two thirds of the world's gross domestic product,
 - and 200 telecom companies
 - This alliance of democracies included:
 - 27 of the 30 <u>NATO</u> members; 26 of the 27 <u>EU</u> members, 31 of the 37 <u>OECD</u> nations, 11 of the 12 <u>Three Seas</u> nations as well as South Korea, Japan, Israel, Australia, Singapore, Taiwan, Canada, Vietnam, and India.

Summary & Wrap-up

Summary

- Why 5G Communications?
- Possible Applications using 5G
- Network Fundamentals
- Before 5G Communications
- 5G Communications
- Security Issues
- Summary