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PREFACE

This report describes a method of generating patrol car schedules for
use by police department systems analysts and management persomnel. Various
measures for evaluating schedules are described, and some general conclusions
regarding the best schedules to use are discussed. This methodology was
originally developed under a contract with the New York City Police Depart-
ment to improve the deployment of patrol cars.

This work was essentially completed in August 1975, when the authors

were affiliated with the New York City-Rand Institute.
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SUMMARY

This report is a part of the general effort in recent years to develop
quantitative methods to assist police departments in allocating resources
and making manpower-scheduling decisions. It presents a methodology for
creating new patrol car schedules that improve the correspondence between
patrol car availability and demands for service.

The level of demand for police service varies considerably through the
day. Recognizing this, police departments assign more patrol cars to duty
during the busy hours. Scheduling decisions, however, have usually been
educated guesses. Improvements resulting from better schedules can be
quite significant. For example, a schedule devised using the methods pre-
sented here maintained performance standards with almost a 25 percent re-
duction in the number of cars fielded under the traditional schedule.

This report demonstrates the use of mathematical models to determine
the hourly requirements for patrol cars. These requirements are input to
a scheduling model that generates schedules that meet the requirements.

The resulting schedules are then evaluated with respect to various measures
of patrol system performance. Data from one of New York City's police
precincts is used to show how the method was applied to a sample problem.

The following is an overview of the methodology:

o Specify the tours of duty and the mealtime breaks that
are permitted.

o Generate estimates of hour-by-hour requirements.

o Using the specifications made above, find a schedule using
the fewest number of cars.

o Evaluate the schedule using information of the levels of
police service that would result if the schedule were imple-
mented.

o - Based on this evaluation, revise the requirements and repeat
as often as necessary.

ESTIMATING PATROL CAR REQUIREMENTS

Using almost any measure of effectiveness, patrol performance is improved

by increasing the number of patrol cars on duty. Waiting times and response
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times decrease while car availability and hours spent on preventive patrol
increase. Most other indicators of the quality or quantity of patrol ser-
vice exhibit improvement when the number of cars is increased.

The probability that all cars are busy is quantitatively related to
the number of cars fielded. This relationship can be used to generate
estimates of the number of cars required at each hour of the day to obtain
desired police performance levels. Although it is difficult to exactly deter-
mine the number of cars needed to keep this probability below a given level,
excellent estimates are provided by some mathematical approximations pre-
sented here. Schedules based on these approximations can be checked using
the evaluation methods discussed later in this report. Therefore, we con-
centrate on the probability that all cars are busy as the main measure of
performance in this report. However, our allocation and scheduling method-

ology can be applied to car requirements based on other service measures.

GENERATING AND EVALUATING SCHEDULES

. Suppose that the number of patrol cars required in the field during
each hour of the day has been specified. Suppose also that there is a set
of acceptable tour start times given by the police department, as well as
a set of acceptable mealtimes. We wish to find tour and mealtime assign-
ments that meet the car requirements using the least number of cars. This
can be accomplished with integer programming.

A schedule generated using integer programming is based partly on
simple approximate models. Before trying any such schedule in the field,
we would like to test it using mathematical models that represent more of
the complexity of the real world. A mathematical model that can be used
for this purpose is the time-~dependent queueing model. With this model,
waiting times, the probability that all cars are busy, and other statistics
can be calculated. It requires as input the hourly call rate, the average
time to service a job, and the number of cars on duty. The model uses a
numerical solution procedure to calculate statistics for small time incre-
ments. Police department management can evaluate a schedule using these

statistics and decide whether to change the car requirements.
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SCHEDULING PRINCIPLES

In order to develop principles of good patrol car scheduling, a series
of new schedules were generated and evaluated using the following character-
istics: number of patrol cars used, number of calls for service, average
number of patrol cars available for preventive patrol, convenience of the
schedule, and patrol car hours available for all work.

The following general principles were derived from this analysis:

0 Maximum benefits from schedule flexibility can be obtained
using five different tour start times and assigning meals
at any time.

o Schedules using three standard tours (starting at 0800,
1600, and 2400) and a fourth tour starting between 1800 and
2000 are nearly as effective as the best five-tour schedules.

o Flexibility in assigning mealbreaks results in a markedly
improved pattern of availability.

o In almost all cases, preventive patrol hours can be doubled
with only small percentage increases in the number of cars.

o The increased workload during the early hours of Saturday
and Sunday can be handled by the addition of a few cars to
the weekend tours covering these patrols.

o The principles summarized above can be generally applied
because call rate patterns are similar throughout the city.
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I. INTRODUCTION

In recent years, a good deal of effort has been devoted to developing
quantitative methods to help police departments allocate resources and
schedule manpower. The work of Larson [13] and of Heller and Stenzel [7]
are important examples. Surveys and evaluations of much of the pertinent
literature are given by Chaiken [2] and by Gass et al. [5]. This report
can be viewed as part of this general effort. It presents a methodology
for creating new patrol car schedules that improve the correspondence be-
tween patrol car availability and demands for service.

The level of demand for police service varies considerably through the
day. Recognizing this, police departments assign more patrol cars to duty
during the busy hours. Figure 1 illustrates both of these points using
data from one New York City police precinct. Scheduling decisions, however,
have usually been more or less educated guesses. Improvements resulting
from better schedules can be quite significant. In an example given below,
a schedule derived uéing the methods presented in this report maintains per-
formance standards with almost a 25 percent reduction in the number of cars
fielded under the traditional schedule.

We view the patrol environment as a complicated multiple-server queueing’
system. Calls for service--either telephone calls to the radio dispatcher
who sends the cars to the scene, or accidents, crimes, and other incidents
encountered by the patrolling units--are assumed to occur randomly over
time. These calls require random amounts of 'service time'" by one or more
patrol cars. When not working on such "jobs" a patrol car is presumed to
be either on preventive patrol or out of service for some reason. A variety
of mathematical models of this environment can be formulated depending on
the objectives of the analysis. Both queueing and optimization models have
been used by other researchers [2]. Our objective is to use queueing theory
to generate estimates of hourly car requirements needed as input to a sched-
uling model, and then to evaluate the resulting schedule with respect to
various measures of patrol system performance. We discuss methods for gener-

ating estimates of patrol car requirements in Section II, an integer program
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for generating schedules given patrol car requirements in Section III, and
a time-dependent queueing model for evaluating schedule performance in Sec-
tion IV. Section V uses data from one of New York's police precincts to
show how the method was applied to a sample problem.

The methodology that we have developed for creating and evaluating
schedules is iterative. 1In broad outline, it consists of the following

steps.

o Specify the Policy Constraints on the Schedules. That is,
what tours of duty and mealtime breaks are permitted? (See
Section V.)

o Generate Estimates of the Number of Cars Needed in the Field
by Hour. This can be done using one of several mathematical
models together with, and modified by, police judgment. (See
Section II.)

o Obtain an Optimal Schedule. Using the specifications made
above, an integer linear program is generated and solved that
satisfies all of the constraints using the fewest number of
cars. (See Section III.)

o Evaluate the Schedule. Using a time-dependent queueing model,
detailed information is provided on the levels of police ser-
vice that would be available over the day if the schedule were
implemented. (See Section IV.)

o Revise the Constraints. Since approximate models were used to
generate car requirements, the schedule generated may not actu-
ally meet all the performance levels desired. Moreover, there
may be performance measures of interest other than those expli-
citly used in estimating patrol car requirements. This should
be remembered when evaluating the resulting schedules. Based
on this evaluation, the requirements and constraints of the
integer program can be revised and the problem resolved. This
Process may be repeated as often as necessary. (See Section V.)
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II. ESTIMATING PATROL CAR REQUIREMENTS

Using almost any measure of effectiveness, patrol performance is im-
proved by increasing the number of patrol cars on duty. Queueing delays
and response times decrease, while car availability and the hours spent on
preventive patrol increase. Most other indicators of the quality or
quantity of patrol service exhibit improvement where the number of cars is
increased. In this section we show, as an example, how one specific measure
of service performance is quantitatively related to the number of cars
fielded, and how this relationship--really an approximation--can be used to
generate estimates of the number of cars required at each hour of the day
to obtain desired police performance levels. These requirement estimates
can then be used as input to the integer programming model described in
Section III. Similar methods can be used to derive car requirements based
on other queueing-related service measures.

The relationship between the number of cars on duty during hour t
and o, the probability that all the cars are busy, is complicated. The
complications arise from the fact that we are dealing with the multiple~
server queueing situation, in which the call rate, the number of cars on
duty, and other factors are time-dependent. Suppose that the hourly call
rates, At’ and service rates, U, are known, and suppose also that o has
been specified. We want to find L the smallest number of cars to place
on duty during hour t so that, given Xt and Hes the probability that all
r,_ cars are busy at a random epoch during hour t is less than d.

This problem is difficult to solve, the primary difficulty being that
the demand for service is not stationary in time, and so T, depends on Xt

-1 Teo1> Me-22 Teopo
using the time-dependent queueing model, which is discussed in Section IV,

and also on A .es, €tc. A solution can be obtained

in an iterative trial and error fashion: Guess at the values of rs

run the model; correct the values of rt on the basis of the runj; etc. In

most cases, however, using the easier to calculate long-run (or stationary)
state probability distribution, computed with parameters  appropriate only
to hour t, will provide excellent estimates of the required number of cars,
. There are two reasons why this is so. First, although queues building
up in hour t may carry over into hour t + 1, if o is small the probability

of a queue will also be small., Therefore, there will be little carry-over,
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and hours t and t + 1 will be approximately independent. Second, although

the call rate, At’ changes over time, the changes in successive hours are,

in general, not large.
Let aj(t) denote the stationary probability that j jobs are in the system

during hour t, given that there are n_ cars on duty, that the call rate is
At’ and that the service rate is B Define Py = At/ut. Then, using results

for the M/M/n queueing model, aj(t) is given by:

i
Pe
=T ay(t), 1<jzn,
a,(t) = .
J J
P ay(e) isa
n (J_nt) n ! ? t
t
and
-1
-1 3
BT 3 0,7t fn_u
- t t t
aO(t) B Z j! + n! [no_u_ -2 )
j=0 t’ t t

Given a value of «a, rt is the smallest value of n such that

n.-1
) a (t) >1-a.
=0
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III. AN INTEGER LINEAR PROGRAM FOR GENERATING SCHEDULES

Suppose that the number of patrol cars required in the field during
each hour of the day has been specified. (This may have been done using
the formulae in Section II.) Suppose also that there is a set of feasible
tour start times, S, given by the police department, all of which we assume
start on the hour. Each tour of duty lasts eight hours. We also assume
that every tour includes a one-hour mealtime, which also begins on the hour.
There may be constraints on the earliest and latest hours of a tour that
can be used for a meal break; let e(t) and 2(t), respectively, denote these
values for a tour starting at hour t. Then the earliest possible mealtime
for cars working tour t starts at hour t + e{t), and the latest possible
mealtime begins at t + 2(t). (These assumptions are made for clarity of
exposition only and are not intrinsic to the model. The model can easily
handle tours starting on the half hour, quarter hour, etc., as well as tours
and mealtimes of any length.)

Consider a 24-hour problem, and let r, denote the (integral) number
of cars required dqriﬁg hour t (¢t = 0,1,...,23; hour 24 = hour 0),
where hour t runs from t to t + 1 clock hours. The decision variables

of the programming problem are:

n, = the number of cars assigned to work the tour starting
at hour i, ieS.
mij = the number of cars working tour i that are assigned to

mealtime at hour j, where it+e(i)<j<i+f(i) and ieS.

We wish to find tour assignments {ni} and mealtime assignments
{mij} that meet the car requirements using the least number of cars. An

integer linear program that accomplishes this objective is:



minimize z n,
. i
ieS

subject to

i+2(1)
m,, =n,, ies
jeite(i) 41
s . (A)
Z TRy 2 Ty t=20,23
ieS
t-7<i<t

n,>0, m, ,>0, and integer.
i- ij-

The value of the objective function is the total number of cars used
over the day. The first set of constraints assures that every car is
assigned a mealtime, and the second set of constraints assures that the
actual cars on duty (number of cars assigned minus number of cars on meals)
meets each of the hourly requirements.

The resulting integer linear programs can be quite large for reason-
able real-world situations. With 6n1y three tour start times and four possi-
ble mealtimes, there are 15 variables and 27 constraints. This is modest but
not trivial for an integer program. With 24 tours, and mealtimes allowed at
any hour of a tour, there are 216 variables and 48 constraints. We have also
formulated and solved problems for an entire week involving as many as 1344
variables and 336 constraints.

Fortunately, the constraint matrix has a special structure that per-
mits the problem to be solved as a mixed integer program in which only a
small number of the variables need be '"forced" to be integers. The remain-
ing variables are automatically integral in any optimal solution. This per-
mits use of a standard mixed integer programming code to solve even the largest

of our problems in reasonable times. The key idea is contained in the follow-

ing:



Theorem: Suppose that n, the number of cars assigned to tour 1,
is limited to integer values. Then mij’ the mealtime assignment variables,
are automatically integral in any basic solution of ).
?roof: When the n, take on fixed values, say ni*’ the constraints
of (A) become
i+ (1) *

mi‘=ni , 1e€S
jeite(i) ™

(®)
lm.<-r + L n " t =0, 23
igs 37 ¢t i ’
t-7<ist
ieS

The only coefficients of (B) are +1 and 0, and each of the col-
umns of the associated matrix contains at most two nonzero elements.
The matrix, therefore, has a network-like structure ‘that is well known
to be totally unimodular. Hence, all of the extreme points of (B)
are integer regardless of the values of r_ and ni* ({41, p. 70; [8],

p. 126).

t

To solve the smaller problems, the mixed integer program (MIP)
subroutines of MPSX [14] can be used in a straightforward fashion.
To solve the larger problems we have modified the branching rules in MIP
to take advantage of the problem structure. See Appendix A for a descrip-
tion of these modifications. An overview of the MIP-MPSX algorithm is

given by Geoffrion and Marsten [6].
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IV. EVALUATING SCHEDULES

The actual environment in which a schedule may be implemented is
complex and random. Nevertheless, a schedule generated using the approach
described above 1is derived from a deterministic integer linear programming
model, the inputs to which are determined partly by simple approximate
models and partly by police judgments. Before trying any such schedule in
the field, we would like to test it using mathematical models that represent
more of the. complexity of the real world. Two types of models can be
used for this purpose. The first is a simulation model of police patrol
operations, such as the one described in [10]. A simulation, however, is
a relatively expensive and cumbersome tool that requires the collection
of a considerable amount of input data to make it work.

The second type of model that can be used for evaluation is a time-
dependent M/M/n queueing model. It is not difficult to develop the set
of differential equations that describes the system dynamics of the M/M/n
queueing system with time-dependent parameters. It is, however, extremely
difficult to obtain an analytic solution to the set of equations. We
therefore propose numerical integration of the differential equations
to obtain such characteristics of the patxol system as the probability
distribution of the number of busy patrol cars and the number of calls
queued. Our approach is motivated by a paper by Bernard 0. Koopman
[11] in which the efficiency and usefulness of this type of model is
illustrated by applying it to the study of air traffic control problems.
Koopman also discusses the advantages of this approach relative to the use
of simulation.

Our time-dependent queueing model represents a single police precinct.
As the different tours and mealtimes commence, the number of police cars
available for patrolling and for servicing calls will vary. The rate at
which calls for service are received also varies during the course of the
day, with a peak occurring in the late evening hours and a lull in the morn-
ning. (See Fig. 1.) From historical data we can predict the average num-
ber of calls for service and the distribution of the number of calls dur-
ing each hour of the day. Our data also permit identification of daily

and seasonal patterns in the call rate. We have determined from these
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call histories that the arrival of calls for service in any given hour can
be well represented as a Poisson process. That is, the probability that a
given number of calls will occur during a given hour in a given day is
specified by a Poisson distribution with a mean characteristic of that time
period. ;

The model assumes that each. call for service is handled by a single
patrol car. In practice it sometimes happens that two or more cars are
necessary to service a call. Nevertheless, a comparison of results
from a stationary M/M/n queueing model (which also incorporates the
one car per call assumption) to results from the simulation model (which
more closely imitates reality and uses as many cars as is appropriate
for the call) indicates that such complications may be neglected without
seriously altering the resulting queueing probabilities [9].

While the types of calls (crimes in progress, past crimes,
emergencies, accidents, etc.) may vary during the day, we have found
that the average service time remains fairly constant. Actual data
show that the service times for calls do not have an exponential
distribution as assumed by the model, but again a comparison of
the M/M/n queueing model to the simulation model, which used
empirical--and hence nonexponential--service times, shows good
agreement for the prediction of average performance.

One limitation of the time-dependent queueing model is that there
is no priority structure in the dispatching of calls. As a result, we
can only examine overall call delays. Modeling of priority calls is
possible, but it would significantly increase the complexity of the compu-
tations. It was not undertaken since detailed analysis of delays by
call priority can be performed with either the simulation or.,a sta-
tionary M/M/n queueing model. Calls in this time-dependent model are
served, therefore, on a first-come-first-served basis. If a patrol car
is free when a call arrives, it is dispatched immediately and the call
remains in the system only for the length of its service time. (The
response time of the patrol car is not explicitly modeled. It would be

very difficult to do this in an accurate way without destroying the
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Markovian nature of the system, which is essential to our method of solution.
Since travel times are short compared to the time spent at the scene of the
incident, this approximation is not critical.) During the service interval
the patrol car is unavailable for further assignments. If a call arrives
when all patrol cars are busy, it waits in queue until all preceding calls
have been dispatched. It is then dispatched as soon as the next car becomes
available.

The model we have just described is an M/M/n queueing system with time-
dependent parameters. In studying this system, we focus attention on the
random variable X(t), the number of calls in the system at time t, including
those being served by patrol cars and those in the queue. A great deal of
information about the performance of the system can be obtained from the

Markovian transition probability function pij(to,t), defined as follows:
Py (Egst) = PIX(t)=3|X(t )=1], €20, et , i 5 =0, 1, ...

For example, let n(t) denote the number of patrol cars on duty at time t.
Then if X(t) is less than n(t), X(t) represents the number of busy cars and
n(t) - X(t) represents the number of cars on patrol. If X(t) is greater
than or equal to n(t), all cars are busy and X(t) - n(t) represents

the number of calls waiting in the dispatching queue. Suppose that

at some time we know that there are i calls in the system--that is,

X(to) = i. Given this information about the state of the system at time

to’ we can calculate the following system performance character—

istics for any future time t:

The probability that there is at least one call in queue:

0

P[X(t)>n(t) +1] = ) Pyt »t) (1)
j=n(t)+1 3oe

The probability that all cars are busy:

(55

P(X(t)>n(t)] = ) p..(t ,t) (2)
j=n(t) 1] (o]

The expected number of calls in queue:

333

Q= ) [j-n(t)Ip, . (c ,
j=n(t)+l le o t) (3)
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-

The expected number of cars available for patrol:

n(t)-1

EA = } [n(e) - jlp, . (x_,0). (4)
3=0 ’

Before considering how to determine the transition probabilities, we
introduce some additional notation:
A(t)= the call rate at time t; i.e., the expected number of calls per
hour being received at time t, which is the mean of the Poisson

process generating the calls. Here we refer to a specific epoch

t and its instantaneous call rate A(t). Earlier we used At to refer

to the average number of calls during the hour t to t + 1.
u = the service rate; 1/u =ES, the expected service time

per call. As verified by actual data, we assume in this

analysis that y does not change through time. (Relaxation

of this assumption would not appreciably complicate the

analysis.)

The transition probabilities satisfy the following system of dif-

ferential-difference equations. For t>to,

' ——
Pio (to,t)— A(t)pio(to,t)+upil(to,t),

1 —_ - Y . .
Pyy (tga =2 ()P, (k1) D (O+3ulpy 5 (Ea)Hu GHp, o (£, 0),  1si<an(e),

pij' (t_,t)=A (t)pij_l(to,t)—[)\(t)m(t)u]pij (to,t)+n(t)upij+l(to,t) > j3>n(e).

These equations cannot be solved analytically for pij(to,t), except

for the simplest of functions A(t) and n(t). However, we can solve (inte-
grate) them numerically. Since A(t) and n(t) are periodic functions
(repeating themselves every 24 or 168 hours depending on the applica-
tion) there is a periodic solution that 1is independent of the initial
state i. We wish to find this periodic solution. We denote it by

pj(t), the "long run" probability that x(t)=j. (pij(to,t) approaches
pj(t) for large t. [7])

(5)
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There are an infinite number of equations in (5) . In order to
solve them numerically we limit ourselves to a finite system of equa-
tions that approximates (5) by assuming--not unrealistically--that
there is a maximum possible number of calls, m, that can be in the
system at one time, In some applications the value of m is dictated
by the limitations of the dispatching system. Where such physical
constraints do not exist, m is chosen so that the probability
of having m or more calls in the system is very small. Hence, we

replace (5) by

po'(t)=-k(t)po(t)+upl(t)

Pj'(t)=A(t)Pj_l(t)—[A(f)+ju]Dj(t)+(j+l)upj+l(t), 1<j<n(t)  (6)

pj'(t)=A(t)pj_l(t)—[A(t)+n(t)u]pj(t)+n(t)upj+l(t), n(t)<j<m

pm’(t)=A(t)pm_l(t)~n(t)upm(t)-

A discussion of the numerical methods used to solve this set of

mtl differential equations is given in Appendix B.
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V. A SAMPLE PROBLEM

We illustrate the scheduling methodology described above with a sample
problem based on data from a police precinct in New York City. The precinct
used in this example cannot be called typical--there is no such thing.

It does, however, have characteristics in the middle range of precincts on
several measures: physical area, total demand for police service, crime rate,
number of cars fielded, etc.

Our data for the hourly call rates are derived from job records col-
lected during one week in August 1972 by the computerized dispatching system
used by the New York City Police Department. Based on empirical data, we

took the average service time to be 30 minutes (U = 2 calls per hour).
Table 1 contains kt’ the call rate, P, = At/Z, the average number of

busy cars, and r the number of cars required so that the system is unclogged

s
at least 90 perc:nt of the time. That is, T, is the smallest number of cars
needed during hour t so that the probability of at least one car being avail-
able to respond to a call is at least 0.9. The values of r, were estimated
using the stationary M/M/n queueing model, as discussed in Section II.

Figure 2 shows the schedule that was actually in use in the precinct
during the period in August 1972 from which our data come. It uses 24 cars
over the three eight-hour tours of a day. Because of low car availability
during the early morning hours, the schedule produces periods in which there is
a very high probability that no cars will be available to answer a call for
service. The line on the graph that shows the probability that there are no
cars on patrol was obtained from the time-dependent queueing model.

In order to obtain schedules with better performance characteristics,
we set up and solved several integer linear programs. A description and

evaluation of some of the resulting schedules follows.

INTEGER LINEAR PROGRAM 1 (STANDARD TOURS WITH STANDARD MEALTIMES)

In this case, we restricted ourselves to the tour start times and
mealtimes generally used in the New York City Police Department. There are
three permitted tour start times--0800,1600, and 2400 (or 0000) hours--and

mealtimes can be taken between the second through the fifth hours of the

So—
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Table 1

t A Pe

t (. /2) r
0 9.8 4.9 9
1 9.6 4.8 9
2 8.7 A 8
3 7.4 3.7 8
4 6.7 3.4 7
5 5.3 2.7 6
6 4.1 2.1 5
7 3.3 1.7 4
8 2.5 1.3 4
9 2.5 1.3 4
10 2.9 1.5 4
11 3.8 1.9 5
12 4.3 2.2 5
13 5.0 2.5 6
14 5.9 3.0 6
15 6.6 3.3 7
16 7.8 3.9 8
17 8.6 4.3 8
18 9.4 4.7 9
19 9.8 4.9 9
20 10.2 5.1 9
21 10.4 5.2 9
22 10.2 5.1 9
23 10.0 5.0 9
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tour. There are 15 variables and 27 constraints in the linear program.

Using the car requirements, To shown in Table 1, we obtain the following

optimal integer solution, which uses 29 cars:

(i) Tour starting at 2400 hours

cars assigned = 10

mealtimes assigned: 1 cars at 0200
2 " "™ 0300
3 " " 0400
4 " "™ 0500

(ii) Tour starting at 0800 hours

cars assigned = 7

mealtimes assigned: 2 cars at 1000
2. " "™ 1100
2 " "™ 1200
1 " ™ 1300

(iii) Tour starting at 1600 hours

cars assigned = 12

mealtimes assigned: 3 cars at 1800
3" " 1900
3" " 2000
3" " 2100

The characteristics of this schedule are illustrated in Fig. 3. Here
again, the probability that there are no cars on patrol was computed using

the time-dependent queueing model.

INTEGER LINEAR PROGRAM 2 (ALL POSSIBLE TOUR START TIMES AND MEALTIMES)
This program allows a tour to start at the beginning of any hour of the

day, and a unit's mealtime can be taken during any hour of the tour. The
solution to this problem provides the smallest possible number of cars that
could be used to meet the specified requirements. Any additional restrictioms,
such as prohibited hours for starting mealtimes or tours, will produce

a requirement for at least as many cars as the solution to this program,
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An optimal integer solution was obtained that requires 24 cars over the day,
but uses 13 different tour start times—-an administrative nightmare to
implement. This schedule is not illustrated. here.

This result led us to ask if it was possible to find a less difficult
schedule, but one that would still require only 24 cars. The type of schedule
we wanted would have only a small number of tour start times, avoid undesirable
start times (e.g., 3:00 a.m.), and have mealtimes scheduled during reasonable
hours of the day. By running programs with different numbers of tours and
different allowable mealtimes, relying on the results of the previous analysis

for insights on what might work well, we obtained the following schedule:

INTEGER LINEAR PRQGRAM 3 (FIVE TOURS, ALL POSSIBLE MEALTIMES)

7 This program has five tour start times--the three current times, 0800,
1600, and 2400, and two additional times, 1200 and 2000. Mealtimes are
allowed at any hour during a tour. The optimal integral solution calls for

a total of 24 cars (the minimum possible) and the solution is:

(i) Tour starting at 0800 hours

cars assigned = 5

mealtimes assigned: 1 cars at 0800
i " "™ 0900
i " " 1000
"™ " 1200
1

" 1400

(ii) Tour starting at 1200 hours

cars assigned = 2
mealtimes assigned: 1 cars at 1200

1" " 1300

(iii) Tour starting at 1600 hours

cars assigned = 8

mealtimes assigned: 2 cars at 1600
2 " " 1700
i "™ " 1800
" " 1900
1" " 2200
1

17" " 2300
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{(iv) Tour starting at 2000 hours

cars assigned = 2
mealtimes assigned: 1 cars at 2000

i " " 2100

(v) Tour starting at 2400 hours

cars assigned = 7

mealtimes assigned: 1 cars at 0300
1 " " 0500
2. " " 0600
3

" " 0700

This schedule is illustrated in Fig. 4. Comparing these results
to the current situation shown in Fig. 2, we see that although both
schedules field the same number of patrol cars over a day, the resulting
performance characteristics are considerably different. For example,
under the current schedule, almost 60 percent of the incoming calls dur-
ing some hours have to wait in queue before a car is dispatched. Under
the schedule resulting from Linear Program 3, the percentage of calls
delayed in queue never exceeds 12 percent.

The above aré only a few examples from an extensive series of inte-
ger linear programs that were solved to test and develop new schedules
for the New York City Police Department. The resulting schedulgs that
appeared capable of being implemented were subjected to analysis using
the time-dependent queueing model. In addition to the one-day schedules
illustrated above, we solved scheduling problems for entire weeks with
data from different seasons of the year and from different precincts. We
used the techniques presented in this paper to find answers to such ques-

tions as:

e What improvements in performance would result if patrol cars
could be assigned to start their tours of duty at any hour of
the day and take their mealtimes at any hour during the tour?

e What is the best schedule that uses only four tour start times?
How much worse is the performance of such a schedule than the
performance of the best five~tour schedule? How much better is
this schedule than the standard three-tour schedule?

e Since the pattern of calls on weekends is different from weekdays,

should the weekend schedules be different?
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Are the patterns of calls for service in different areas similar
enough so that principles developed from studying a few precincts

can be applied generally?

How does the number of patrol cars assigned vary with the desired

service levels?
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VI. RESULTS: SOME SCHEDULING PRINCIPLES

In order to generate improved patrol car schedules and to develop
general principles of good scheduling, we undertook a series of analyses
with the linear programming and queueing models. In this section of the
report we discuss the results of this work. The many new schedules that
were generated during this analysis are evaluated and compared using the

following characteristics:

o The number of patrol cars used. This is the measure of re-
source input. We denote it by N.

o The service level. This is the probability that all patrol
cars are busy simultaneocusly. We denote it by a.

o Work time. This is the time available to each fielded car
to answer calls for service and undertake preventive patrol
——after accounting for meals, vehicle down-time, administra-
tive duties, etc. We denote it by h.

o The average number of patrol car hours available for (pre-
ventive patrol. This is the difference between total work
time (Nh) and average total patrol car hours required to
service all jobs. For a 24-hour day

24
A=DNh - 1/u IO A(t) dt.

o The convenience or attractiveness of the schedule to the patrol-
men and to management. For example, a schedule with seven
different tour starting times might rate highly on the character-
istics cited above, and yet be unusable because of its unattrac-
tiveness to the men and its unwieldiness to manage and imple-
ment.

Before getting into the details, we present an overview of the questions

raised and the answers provided by the analysis.

o Schedules Using Minimum Patrol Resources

The question: What kind of schedules would be used and what
improvements would result if patrol cars could be assigned to
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start their tours of duty at any hour of day and take their
meal breaks at any hour during the tour?

The answer: The maximum benefits can be obtained by using five
different tour start times and by assigning patrol cars to take
meals at any hour of the tour (including the first and last
hours). These schedules can achieve the same service level a
as the standard three-tour schedule with standard meal breaks,
but with about 207 fewer cars. If the same number of cars are
used as in a standard three-tour schedule, these new schedules
can eliminate undesirable variations in the service level.

Schedules Using Four Tours

The question: What is the best schedule that uses only four tour
start times? How much worse is such a schedule than the best
five-tour schedule? How much better is this schedule than the
standard three-tour schedule?

The answers: The best four—-tour schedules have tours starting

at the three standard times of 0800, 1600, and 2400, and a fourth.
tour starting between 1800 and 2000. Such four-tour schedules

are nearly as effective as the best five-tour schedules. They
have marked advantages over the standard three-tour schedule:

They provide more patrol during the evening hours of high crime,
and they result in a very much lower probability that no cars

are available during the early morning hours when the call rate

is still relatively high. (These are the hours when the standard
three-tour schedule's performance is poorest.) These observations
are valid regardless of the mealtime schedules in force, as long
as the same mealtime scheduling rules are in force for all tour
arrangements.

Scheduled Mealtimes

The question: What performance benefits result from increasing
the range of hours during which meal breaks are taken? (In
New York City, unlike some other municipalities, each policeman
has a scheduled meal hour during his tour of duty.)

The answer: Increased flexibility, even to the extreme of
assigning meal breaks in the initial or final hour of the tour
(thus permitting the unit to be on duty for seven rather than
eight hours), markedly improves the pattern of availability.
The magnitude of this effect is equivalent to that of several
additional cars.

How Patrol Car Requirements Vary with Desired Performance Level

The questions: How many additional patrol units are needed to,
say, double the number of hours of preventive patrol, or, say,
halve the service level, o?

The answers: Since the total workload of answering calls is
fixed, any additional patrol car hours beyond those necessary

to handle calls are additional hours available for preventive
patrol. So, in almost all cases the number of preventive patrol
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hours can be doubled with only small percentage increases in
the number of cars. On the other hand, halving the service
level will usually require very significant increases in
patrol cars. Graphs of both available patrol hours and ser-
vice level as a function of the number of cars on patrol are
given in Fig. 5 for a typical precinct.

o Weekend Schedules

Question: Since call rates on weekends are different from
weekdays, how different should weekend schedules be?

Answer: Increased workloads encountered in the early hours
of Saturday and Sunday mornings can be handled by adding a
few cars to the tours covering these periods.

o Similarity of Scheduling Principles for Different Precincts

Question: Do the patterns of demand for patrol car services
differ so much from precinct to precinct that general principles
and extrapolations cannot be made from a few 'typical” precincts?-

Answer: From the analysis of demand patterns in six precincts
chosen to be representative in New York City, we conclude that
the principles summarized above can be generally applied and
that the single most important characteristic in scheduling

is the overall call rate.

To answer the above questions we generated two types of schedules:

(1)

(2)

Schedules for a "typical' or average day. The call rates used in

generating these schedules are averages by hour over all days of
the week. The linear programming model consists of 24 one-hour
time periods. We used this model for most of our analyses since
it can provide answers to many of the questions posed, and yet is
much more economical to run the larger model described below.

Schedules for a '"typical"” or average week. The call rates are the

averages for each hour (by day of week) during the week. The linear
programming model consists of 168 one-hour time periods. This model
is quite large and more expensive to solve. Its use was therefore
restricted to questions about weekday vs. weekend scheduling and

to checking observations and principles that seemed to be valid on
the basis of our analysis of an average day with the smaller 24-hour

linear program.
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In most of our analyses we used the average number of calls for service
received per hour through 911 in the summer of 1972 in the 71st Precinct.
Because we did not include 'pick up jobs'" or other incidents not initiated
by a call through 911, workload (or demand) is understated. On the other
hand, there is some reason to believe that the job service times, also esti-
mated from data for 911 calls, are overstated. The key input parameter in
the models is the product of the call rate and the average service time, and
so the two effects tend to cancel each other, although not completely. More-
over, the principles we drew from the analysis do not depend in a crucial way
on precise knowledge of these characteristics. It is the general level of
calls and more importantly their pattern through the day that are most signi-
ficant. So we believe that the principles are valid, even though the data
may be somewhat imprecise, and that the effort required to obtain more exact
data would not have been warranted. Even though the Department has a
computer-aided dispatch system, only data for 911 calls are recorded. The

collection of data for all calls would have been a difficult manual task.

MINTMUM CAR SCHEDULES

According to logs from the NYPD Communications Division, the average
number of cars fielded per day in the 71st Precinct during that period was
24: six cars on the midnight to 8 a.m. tour, eight cars on the 8 a.m. to
4 p.m. tour, and 10 cars on the 4 p.m. to midnight tour. Figure 2 shows
the time-dependent queueing model results for this schedule. The probability
that all cars are busy peaks strongly at several points, and is well above
0.1. We solved a linear programming model that permitted tours to start at
any hour of the day and meal breaks to be assigned during any hour of the
tour, and set the service level o = 0.1. The resulting schedule used a
total of 24 cars assigned to five tours, beginning at 0800, 1200, 1600,
2000, and 2400 hours. It was somewhat surprising that only 5 of the 24
possible tour start times were used. This result seems to hold promise
that effective yet simple schedules can be generated.

However, the complete flexibility of mealtime assignments was used

in the linear program solution and some cars were assigned to take meal
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breaks during the first and last hours of their tours. This is a less pleas-
ing result, since such meal breaks may be impossible to implement. Figure 3
shows the time-dependent queueing model results for this schedule. The peaks
observed in Fig. 2 in the probability that all cars are busy have been lowered,
and the function lies at or below 0.1 throughout the day--a considerable im-
provement over the other 24-car schedules.

In order to determine how much of this improvement was due to the new
schedule of meal breaks, we also solved a linear program identical to the
one above in all respects except that meal breaks were restricted to the
usual hours—-from the third to the sixth hours of tour. This schedule re-
quired three more cars--a total of 27. In subsequent sections we discuss the

issue of mealtime scheduling further.

BEST FOUR TOUR SCHEDULES

In the past, New York City has experimented with four tour schedules.
The "best" schedule we have developed uses only five tours. Moreover, this
schedule includes the three standard tours. Therefore, we ran several series
of linear programé to determine the best possible four tbur schedules. 1In
the first series all meal break times were permitted. In the second series
only the (currently used) four middle hours of the tour were permitted. 1In
the third series meal breaks were permitted during the middle six hours of
the tour, and in a fourth series meal breaks were permitted in all hours ex-
cept the second and seventh. The key results are summarized in Table 2, which
shows that a four-tour schedule using the standard three tours starting at
0800, 1600, and 2400 hours, and an additional tour starting at 2000 hours,
is best as it uses the fewest cars under all mealtime regimes. The results
in the table also show that a fourth tour starting at other hours between
1800 and 2200 hours may be equally good, depending on the meal break regime
used. Other results not presented here showed that no other four-tour
schedules are superior to those that use the three standard tours plus an

additional tour beginning in the late afternoon or early evening.
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Table 2

NUMBER OF CARS REQUIRED ON SOME FOUR-TOUR SCHEDULES
(a = 0.1 AND THREE TOURS STARTING A 0800, 1600 AND 2400 HOURS)

Fourth Tour Meals Permitted During Tour Hours

Starting Time 1-28 3 - 6 2 -7 1, 3-6, 8
none? 26 29 28 28
1800 26 28 27 27
1900 26 28 27 26
2000 25 28 27 26
2100 25 29 27 27
2200 25 29 26 Not Run

aThree—tour schedule.

MEAL BREAK SCHEDULING

The data in Table 2 show that significant gains result if meal breaks
can be spread out more evenly during the tour. Evidence of this can be
seen by examining the top row of the table which gives, for different meal
break regimes, the number of cars required when the standard three tours
are used. Where meals are taken only during the middle four hours of the
tour, 29 cars are needed, while only 26 cars are needed if meal breaks may
be taken during any hour of the tour. Under the other two regimes, 28 cars
are needed. Similar evidence of the impact of meal scheduling can be seen
in the row corresponding to schedules with a fourth tour starting at 2000
hours. With the standard meal schedule 28 cars are needed. When all hours
are usable 25 cars are needed, while 27 cars are needed when meals are per-
mitted in hours 2 through 7 and 26 cars are needed when meals are permitted
in all hours except 2 and 7. Other results not included in the table show
that permitting meal breaks in hours 2-8 of the tour yields schedules using
the same number of cars as when meals are limited to the hours 2-7 of the
tour.

It is conceivable that the assignment of meal breaks during the first

or last hour of the tour--an option that at first seems bizarre--might be
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an attractive option. Suppose that men assigned to "take meals in the
first hour of the tour" were permitted to arrive an hour later and work
for seven consecutive hours. They would have a seven-hour work day. Ex-
cept under the most extraordinary of circumstances, the nature of motorized
patrol permits the taking of light snacks or sandwiches without interrupting
patrol. In fact, this is common practice at the present time. The same
seven-hour work day option could apply to those men whose meals are scheduled
for the last hour of the tour. ’

We note that Table 2 shows that the most effective options are those

that combine increased flexibility in meal scheduling and a fourth tour.

PATROL CAR REQUIREMENTS AND DESIRED PERFORMANCE LEVELS

Patrol performance increases with more cars. Here we examine the nature

of this relationship for two key performance measures:

o The amount of preventive patrol;

o The probability that all patrol cars are busy.

Preventive Patrol

The number of patrol cars that must be added to yield a specified increase
in car hours available for preventive patrol can be calculated as follows. We
consider a single tour (or other time period of interest) and assume that the
same number of cars are fielded throughout the tour. The "tour" is t hours
long and each fielded car yields h hours of "work time," (h < t). Suppose
that calls for service occur at a rate A per hour and 1/u is the average ser-
vice time in patrol car hours per call. During a tour of length t hours the
patrol force must expend At/u patrol car hours servicing calls. If N cars
are fielded we have Nh hours of work time so that A, the hours available for

preventive patrol, is given by

A = Nh - At/u. 0))
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We assume that A is greater than zero. If it were not, all calls
could not be handled, very large queues would develop and the situation
would be generally out of hand.

Clearly, according to (7), every car added increases A by h hours.
(This makes a tacit assumption that the behavior of the patrol force is con-
stant.) If this is not so, and there is more time out when more cars are
fielded, for example, then h is effectively decreasing and (7) does not
hold. A little reflection on (7) will indicate that when many cars are
answering calls, A is small and small percentage increases in N can yield
enormous percentage increases in A. We quantify this relationship as
follows: Suppose we wish to increase A by a factor § (that is, by 1006
percent). What is B8, the associated proportional increase required by N?

From (7) we see that the relation is

(L+ 6)A=(1+g) Nu - At/ (8)
or
Y
B = (l - -uht*NJ . (9)

The term At/uhN is the average proportion of work time that a car
uses in responding to calls for service. It is clear that when this
proportion is high we get very significant percentage increases in A
for small percentage increases in N.

We take some numbers from the sample problem to illustrate this effect.
The average total car hours (At/u) needed to service calls over the mid-
night to 8 a.m. tour is about 29. 1In the actual schedule, about six cars
are fielded. Ignoring any other nonservice-nonpatrol activity save meals,
this gives 42 available work hours, or on the average about 13 hours avail-
able for patrol. To increase the patrol hours by 100 percent to 26 hours
would require 13/7 = 1.86 more cars, an increase of only about 31 percent
over the six cars assigned. The numbers are only meant to illustrate these
effects and are not intended to indicate the desirability or undesirability

of any actions.



-32-

Probability That All Cars are Busy

We now determine how the number of patrol cars required depends on a,
the probability that all cars are busy. This is much more difficult to
study than availability for preventive patrol, which was just discussed,
because a is linked to the number of cars by complicated queueing equations
that we can solve only by numerical integration. Moreover, the resulting re-
lationship is fundamentally nonlinear--in contrast to (7).

An approximate but essentially accurate impression of this relation-
ship can be obtained by examining some numbers produced by the M/M/n/n
queueing model that is used to generate the requirements for the scheduling
linear programs. We used this model to generate hour-by-hour car require-
ments for various values of a. In Fig. 6 we display these results for
a = 0.50 and 0.01. The nonlinearity of the relationship is apparent.

The most important aspect of this nonlinearity is that each additional

car results in smaller and smaller decreases in o. Figure 7 illustrates
this more concretely. Here we have plotted o versus the number of cars

on duty for a specific value of p = A/u, namely p = 5.0, which is about

the highest hourly demand rate in the 71lst Precinct. A minimum of six cars
must be assigned or extraordinary queues will develop. With six cars

a = 0.59, and by adding a seventh car a is reduced by 0.27 to 0.32. Add-
ing an eighth car gives a smaller reduction of 0.15 to 0.17, and so on
until adding a twelfth car yields a reduction of only 0.01 below the value
of o for eleven cars. The phenomenon of decreasing returns is quite general
—-it holds for all parameter values.

Results obtained from the scheduling model also illustrate this phenomenon.
Figure 8 plots the number of cars vs. a for computer-generated schedules.

Two types of schedules are shown:

(1) Schedules using the standard three tours and the standard meal
times during the middle four hours of each tour.

(2) Schedules using four tours, the standard ones and an additional
tour starting at 2000 hours, and permitting a meal break at any

hour of the tour.
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CAR REQUIREMENTS BY HOUR FOR
VARIOUS a'’s 71ST PRECINCT
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NUMBER OF CARS REQUIRED TO ACHEIVE A SPECIFIED
LEVEL OF a, THE PROBABILITY THAT ALL CARS ARE BUSY

COMPUTER GENERATED SCHEDULES FOR AN AVERAGE
SUMMER DAY IN THE 71ST PRECINCT
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4 TOURS-ALL MEAL HOURS
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Fig. 8. The number of cars assigned vs. the probability
that all cars are busy
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The curves for both tour configurations show the same decreasing

convex relationship

SUMMARY OF THE RELATIONSHIP BETWEEN PERFORMANCE
AND THE NUMBER OF CARS FIELDED

An overview of two relationships—-A, car hours available for patrol
and a, the probability that all cars are busy as functions of N, the number
of cars assigned--has already been shown in Fig. 5. There we plot A and
1 - a, the probability that at least one car is available, vs. N for the
same two types of schedules that were just discussed (and whose results
are given in Fig. 8). We see, of course, that both A and 1 - o increase
with N, and that 1 - o increases at a decreasing rate while the number of
car hours available for patrol increase linearly.

Two important observations can be made:

o The number of car hours available for patrol are the same
for either--in fact for any~-schedule with the same number
of cars assigned. The schedule only affects how these hours
are distributed during the day.

0 With respect to 1 - a, the four-tour schedule with no re-
strictions on meal hours is superior to the three-tour
schedule with standard meal hours for any number of cars
assigned. Further, the difference is largest in the range
(about 24 cars) in which the department was operating dur-
ing the period when the data were gathered.

SCHEDULING OVER THE WEEK

All of the analyses and results presented so far have been for sched-
uling over a single-~typical--day. A great deal about scheduling can be
learned by such analysis, but one must also explicitly face the fact that
demand for police patrol service varies over the week.

There are small variations from day to day. These variations are not
large enough to require daily differences in schedules. But variations
large enough to require different schedules do occur between weekdays and
weekends. These differences are primarily during the midnight to 8 a.m.
period of Saturday and Sunday. (See Table 3 which gives the hourly call
rates by day of week for the 71st Precinct for the year from September 1971

to October 1972.) The weekend-weekday variations are shown in Fig. 9.
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We determined the differences in schedules between weekends and week-
days by using a linear programming model for the entire week. The model
includes all 168 hours of the week. Our analyses used hour-by-hour call
rates averaged over all weekdays and averaged over both Saturday and Sun-
day for the weekend. The data spanned an entire year.

Several types of schedules were generated, including schedules using
the three standard tours, four-tour schedules using the three standard
tours, and a four-tour schedule starting at 2000 hours. Schedules were
generated with both the standard meal breaks and with meal breaks permitted
during any hour of the tour. 1In addition to schedules generated under the
assumption that all weekdays are the same and both weekend days are the same,
we generated schedules for which the call rate pattern was different for each
day of the week.

The results of the analysis can be summarized simply:

o The advantages of four-tour and five-tour schedules that
were generated for a "typical day" also hold for schedules
over an entire week. :

o The advantages of flexible meal hours in schedules generated
for a "typical day" also hold for schedules over an entire
week,

o The weekdays and weekends are only "loosely coupled." That
is, the additional cars required on duty during the early
morning hours on the weekends are obtained by simply sched-
uling more cars during the tours starting at 0000 hours on
those days. The weekday schedules are the same as those
generated if a typical weekday is considered as a separate
scheduling problem. The weekend schedules are the same as
those generated if a typical weekend day is regarded as a
separate scheduling problem.

Table 4 displays a week~long schedule for the 71st Precinct using four
tours with @ = .1 and with meal breaks permitted during all hours. Note
that each weekday a total of 21 cars are assigned, with 4, 7, 8, and 2 cars,
respectively, being allocated to each tour. The weekend days have 23 cars
assigned, the additional two cars going to the first tour (midnight to 8

a.m.), making the pattern 6, 7, 8, and 2.
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Table 4

NUMBER OF PATROL CARS ASSIGNED DURING THE WEEK--
A COMPUTER GENERATED SCHEDULE

Tour Start
Time Sun. Mon. Tues. Wed. Thur. Fri. Sat.
0000 6 4 4 4 4 4 6
0800 7 7 7 7 7 7 7
1600 8 8 8 8 8 8 8
2000 2 2 2 2 2 2 2

8y = 0.10, meal breaks permitted during all hours.

DEMAND fATTERNS IN DIFFERENT PRECINCTS

Most of our analyses were based on data from the 7l1st Precinct in

Brooklyn. If this precinct had a pattern of calls for service that was
atypical--by hour of day, or day of week, etc.--it would be erroneous to
apply the scheduling principles just discussed to other precincts. We
therefore carried out an extensive analysis of demand patterns in six
precincts that were suggested by the NYPD as having a broad range of
characteristics. The precincts studied are identified in Table 5. For
these precincts we studied the time patterns of service times and of calls
for service—-by hour of day, by day of week, and by month. We found that
for all precincts, the assumption that the number of calls per hour follows
a time-varying Poisson process is quite accurate. Moreover, we found that
the patterns by hour of day are very similar. Figure 10 illustrates these
results.

We conclude that although there certainly will be individual excep-
tions, the scheduling principles outlined here should apply to most police

precincts in New York City.
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Table 5
PRECINCTS STUDIED IN DEMAND ANALYSIS

Precinct Location
13 Lower Manhattan
44 South Bronx
66 Central Brooklyn
71 Heights, Brooklyn
83 Central Brooklyn

103 Eastern Queens
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APPENDIX A

An IBM program product [14], the Mathematical Programming System
Extended (MPSX) with Mixed Integer Programming (MIP), was used to obtain
integer solutions to the scheduling problem. MIP uses the branch and bound
method of solving mixed integer programming problems, and allows the user
to choose a standard solution strategy or to implement a strategy appro-
priate to the structure of the problem.

We modified the standard solution strategy because of several special
features of the scheduling problem. In our problems, all feasible integer
solutions have integer-valued objective functions, and the optimal integer
solution is, in general, very close in value to the optimal solution to
the problem when integer constraints are relaxed. Also, there may be many
alternative optimal solutions, but for our purposes, we often do not need
to enumerate these alternatives. Finally, the standard MIP strategy makes
heavy use of the "pseudocosts" of altering variable values and of the vari-
able weights in the objective function. Since all of the integer variables
in our objective function have the coefficient unity, some modification of
the branching rules seemed desirable.

When the search for an optimal integer solution commences, there is
already available an optimal solution to the problem obtained by relaxing
the integer constraints. We take advantage of the fact that the integer
solution is often close to this "continuous solution'" by placing all nodes
whose objective function value is at least four cars more than the continu-
ous solution into an inactive state. If there is no integer solution this
close to the continuous solution, a new set of nodes with values of no more
than eight cars higher than the continuous solution is amde active. This
process continues until an integer solution is found. In practice, an in-
teger solution has always been found among the first set of nodes.

When a feasible integer solution is found, all nodes with a value
lower by less than one are placed in an inactive state and all nodes with
values worse than the solution are dropped. Because we know that any in-

teger solution must have an integer functional value, we know that the nodes
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just made inactive cannot lead to an integer solution better than that
just obtained. The nodes are not dropped, however, since the last solu-
tion might be optimal and we may want alternative optimy for some problems.

As the search progresses, the best functional value among all the
nodes, which is usually noninteger, will become larger. If we obtain an
integer solution that has a functional value equal to the best functional
value rounded up to an integer, we know that the solution is optimal. If
only one optimal solution is desired, the search can stop at this point.
If alternative optimy are wanted, the search continues.

During the search process the variable expected to give the greatest
expected functional deterioration is chosen as the branching variable, and
all variables with current values [x]+.2<x<[x+1]-.2 are given priority for
branching consideration. The node with the best functional value is chosen
in order to obtain a "bushy'" tree [1]. Since we know that the optimal in-
teger solution will usually be close to the optimal continuous solution
and since we also know that the optimal solution can be no smaller than
the best functional value rounded to the next highest integer, this pro-
cedure ensures a quicker '"proof of optimality" even though it may take
longer to find the first integer solution. |

While the standard solution strategy would have been sufficient to
obtain the desired solutions, the revised strategy allows a quicker proof
of optimality and a more predictable behavior of the search process for

our particular problem.
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APPENDIX B

An IBM program product, the Continuous System Modeling Program
(CSMP) [3], was used in the numerical solution of the time-dependent
queueing equations. CSMP permits descripticn of the queueing model
with FORTRAN-like statements, and the user can select among various
numerical integration techniques.

We selected the fourth-order Runge~Kutta method with a wvariable
step size. Two difficulties peculiar to the family of equations we
were solving led to this choice. First, Runge-Kutta was chosen be-
cause there is a discontinuity in the equations at each tour change
or scheduled meal. There are many numerical integration methods that
evaluate the equations to be integrated several steps ahead and use
the results to estimate higher-order derivatives, which are in turn
used to accelerate the integration.* Unfortunately, the estimated
derivatives are incorrect when a discontinuity exists in the equa-
tions. The Runge-Kutta techniques, in contrast, concentrate on a
single stép and do not look ahead. Therefore, if a single step does
not pass over a shift change, there will be no discontinuity in the
calculations.

Second, a variable step size was chosen because after a shift
change there may be a quick transient response in the solution. The
intervals over which strong transient responses occur constitute only
a small fraction of the entire interval of integration. A fixed-step
procedure would have required an uneconomically small step size over
the entire time period of the calculations to insure the numerical
stability of the solution immediately after the shift changes. There-
fore a variable step procedure was chosen with the constraint that a
step could not straddle a shift change.

During the numerical evaluation of the equations, the state pro-
babilities were constrained to be greater than or equal to zero. A
check was made of numerical accuracy by summing the probabilities. At

no point in the solution did the sum deviate from unity by more than
0.0014.

* .
See[12] for a discussion of alternative numerical integration
techniques.
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As initial values for the integration, we used the steady state
solution for the M/M/n system with the midnight parameter values. The
integrations were run for a two-day interval and the solutions for the
first day were compared to the solutions for the second day. After a
sufficiently long time the effects of the initialdistribution should
disappear and one might expect that two solutions of the equations
separated by 24 hours would be close. In all cases, the probabilities
converged to the periodic solution well before the onset of the second
day. Of course, we did not learn this until the second day had been
solved. The values of pj(t) for the second day were then used as the

periodic solutions to the equations.
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