
 Introduction to Mobile Phone

Programming in Java Me

(prepared for CS/ECE 707, UW-Madison)

Author: Leszek Wiland
and Suman Banerjee

1

Content

1. Introduction

2. Setting up programming environment

3. Hello World Application

4. GUI and User Interaction

5. Networking

2

1. Introduction

In this tutorial I will explain the main concepts of developing mobile applications in Java Me. I
will start with setting up programming environment in Windows operating system and then
proceed with showing Java Me programming model on the example of a number of mobile
applications

Java Me is a specification of a subset of Java platform which provides a set of Java APIs for
development for small and resource-limited devices. Since this can include many technologically
different devices, Java Me is furthermore divided into configurations and profiles which define
some certain part of the Java Me APIs which are suitable to be run on a particular device. Mobile
Phones have to implement CLDC (Connected Limited Device Configuration) along with MIDP
(Mobile Information Device Profile) which both define API which we as programmers can use to
build mobile applications. However, both CLDC and MIDP come in different versions suitable for
different mobile phones. As of now, Nokia N95 implements the newest version of both CLDC
which is 1.1 and MIDP which is 2.0. It is important to mention that a new 3rd version of MIDP is
currently under development. Java Virtual Machine for mobile devices has been rewritten and it is
not anymore the memory hungry one well known from PC but has been specially optimized for
small devices such as mobile phones.

2. Setting up programming environment

There are four main components to be installed in order to start programming in Java for mobile
devices. The first one is Java SE (Standard Edition) Development Kit which you might already
have installed on your machine; the recommended version is 1.5.0. Next you should download and
install Sun Java Wireless Toolkit for CLDC; current version 2.5.2 which can be found at the
following link:

http://java.sun.com/products/sjwtoolkit/download.html?feed=JSC

Scroll down to the bottom of the page to find the file. Next install Nokia SymbianOS/S60 SDK for
Java. There are multiple versions of this SDK each for a different group of devices. Nokia N95
supports the newest version of the SDK: S60 3rd edition, Feature Pack 2 which can be found under
the following link:

http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b 4081999c31f1f0dc2dbb/
S60_Platform_SDKs_for_Symbian_OS_for_Java.html

3

http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b 4081999c31f1f0dc2dbb/S60_Platform_SDKs_for_Symbian_OS_for_Java.html
http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b 4081999c31f1f0dc2dbb/S60_Platform_SDKs_for_Symbian_OS_for_Java.html
http://java.sun.com/products/sjwtoolkit/download.html?feed=JSC

Look on the right hand side and chose 3rd Edition FP2v1.1 (455 MB) file for downloading.
The last thing to install is Eclipse or some other Integrated Development Environment capable of
working with Java Me Edition (Java Micro Edition) for example NetBeans with Mobility Pack. In
this document I will show how to set up a project with Eclipse so if you don't have Eclipse already
installed on your machine you can find it at:

http://archive.eclipse.org/eclipse/downloads/drops/R-3.2.2-200702121330/index.php

An additional Eclipse Me plug-in would be needed for Eclipse to work properly with Java ME and
it can be found at the following link:

http://sourceforge.net/project/showfiles.php?group_id=86829

Unpack the zip file and copy all the files in plug-ins and features directories to the corresponding
directories in your Eclipse folder. Having done this, we can proceed to configure Eclipse to work
properly with Java ME and the phone emulator. Firstly, select Window->Preferences and chose
J2ME node and select Device Management. Press import and browse for
C:\S60\devices\S60_3rd_MIDP_SDK_FP2_Beta or any other directory you installed the S60
SDK, click refresh and make sure that both S60Emulator and S60Device devices' checkboxes are
checked. Press finish and then import again. This time browse for C:\WTK2.5.2 directory, click
refresh and make sure that all four devices are selected, then press finish. Back in the main dialog
select DefaultColorPhone as the default device. Unfortunately, choosing any other one would
make the application fail. Having done that, go to Window->Preferences, expand node Java-
>Build Path, then For item Source and output folder, select the radio button Folders, and keep the
defaults (src and bin). Next expand node Java->Debug and uncheck Suspend execution on
uncaught exceptions and Suspend execution on compilation errors, and at the end set Debugger
timeout(ms) to 15000 This is enough to start programming for mobile devices and since we have
the phone emulator it is easy to test anything we have written. However, in order to move
applications easily from computer to a real phone we would need Nokia PC Suite which does that
for us. It can be found at:

http://europe.nokia.com/pcsuite

3. Hello World Application

Once all the elements of the programming environment are installed we are ready to create a first
Java Me application. Start with opening Eclipse and then select File->New->Project. Expand J2Me
node and choose J2ME MIDlet Suite. Press next, give the project a unique name and press next
again, also make sure that in the “Group:” menu, Sun Java Wireless Toolkit is chosen and in
“Device” menu DefaultColorPhone is selected. Press next and select “Allow output folders for
source folders” and press finish. Once Java Me project is created we need to add a MIDlet class to
the project which is the heart of each Java Me application. To do so, right click on the project,
select New->Other and choose J2ME MIDlet. This will create a skeleton for Java Me application.
Generally, any Java Me program for embedded devices such as Nokia smart phones is called a

4

http://sourceforge.net/project/showfiles.php?group_id=86829

MIDlet. There are few differences between Main class of a Standard Java Application and a Main
class of a Java Me application. First of all, Java Me Main class does not have main() function, but
instead has three empty methods and is derived from MIDlet class (is a subclass of MIDlet class).
Each Java Me application has to have a Main class which is derived from MIDlet and contain the
following three methods:

1. protected void destroyApp(boolean arg0);
2. protected void pauseApp();
3. protected void startApp();

A MIDlet is simply a backbone of the application and when it is started, Java Virtual Machine
would load that Main class and start its startApp() method which in this case acts like the old
main() function known from Java SE. The destroyApp(boolean arg0) method is called whenever
we want the application to terminate, whereas the pauseApp() is called by the underlying operating
system when it needs to free up some extra resources and would like our application to stop
executing for some time. This might happen, for example, if there is an incoming call and the
operating system needs to free as much resources as possible to deal with this task. Therefore, if
our application uses a lot of system resources this would be the place to free them up. However, if
we leave this method empty then no resources will be freed by the operating system.

The following simple MIDlet, does not do anything in particular. It is also not capable of any user
interaction whatsoever, and therefore cannot be terminated if started on the mobile phone. If run on
the computer it can be easily killed by closing the simulator window. The
"System.out.println("Hello World");" statement will not have any effect when run on the phone
simulator or on the device itself, and therefore cannot be used for printing output.. It would be
printed, however, on the Eclipse console and so it is very helpful for debugging.

Code 1

public class Main extends MIDlet {

public Main() {
// TODO Auto-generated constructor stub

}

protected void destroyApp(boolean arg0) {
// TODO Auto-generated method stub

}

protected void pauseApp() {
// TODO Auto-generated method stub

}

protected void startApp() throws MIDletStateChangeException {

System.out.println("Hey");
}

}

5

The final step of the development process is to install above Java Me application on mobile device.
To do so, we need to generate a jar file which then is copied to the phone. Right click on the
project and select J2ME->Create Package (on the very bottom). This will generate one jar and one
jad file, both of which are stored under deployed directory in the Java Me project. Once the output
files are ready we will install them on the phone device using Nokia PC Suite application. First
connect the device to the computer preferably by USB cable and choose PCSuite from the options
displayed on the device screen. Then start PC Suite application on your machine and select Install
Application item which is on the left bottom of the application window. Browse for the project jar
file and by pressing an installation arrow between My Computer and My Phone window copy the
jar file to the device where you can finish the installation process.

4. GUI and User Interaction

There are two ways to build a user interface with Java Me. First and the easiest is using high level
API which consists of already created components which can be mixed together in almost any
fashion. The high level API does also take care of displaying it properly on the screen, scrolling
through the menus if needed and basically make our life much easier. All the components have to
be eventually attached to an object which is derived from Displayable class to be displayed on the
screen. So when using high level API to build a user interface we end up attaching different GUI
elements such as TextFields, Buttons, Lists or TextString to an object which is derived from
Displayable such as Form, then we set that Displayable to be displayed on the screen, and that is it.
This means that we can prepare many different user interfaces or menus and switch between them
as easily as it is to set a new Displayable to be displayed on the screen. Once we have the GUI
ready we need to take care of user interaction, and this is done by making one of our classes,
preferably MIDlet, to implement CommandListener interface which consists of one method:

public void commandAction(Command c, Displayable g);

Code 2

public class Main extends MIDlet implements CommandListener{

6

public Main() {
// TODO Auto-generated constructor stub

}

protected void destroyApp(boolean arg0) {
// TODO Auto-generated method stub

}

protected void pauseApp() {
// TODO Auto-generated method stub

}

protected void startApp() throws MIDletStateChangeException {

System.out.println("Hey");
}

public void commandAction(Command c, Displayable g) {
// TODO Auto-generated method stub

}
}

Any time there is a user generated event the commandAction() method is called with Command
and Displayable arguments passed to it. We can respond to the user input by checking what
command has been generated and react accordingly. The above MIDlet implements
CommandListener interface but still cannot process any user input since we have not defined any
commands which would let the user to interact with the application. Before proceeding to explain
how to do this I will shortly write about the second way of building GUI which is low level API. It
lets us directly deal with what is displayed on the screen by defining a paint() method which is
called every time screen has to be refreshed. It also provides a way of capturing any user input,
whereas high level API can capture only these event which are directly generated by interacting
with buttons displayed on the screen, therefore it misses all the alphanumeric keys. In order to use
low level API one of the classes has to be derived from Canvas class and implements the paint
method.

protected void paint(Graphics g);

The canvas object defines several other method apart from paint() which are used mainly for
handling low level user interface I will primary focus on paint() and keyPressed(). The following
MIDlet demonstrate use of low level API:

Code 3

public class LowLevelAPI extends Canvas{

7

protected void paint(Graphics arg0) {
// TODO Auto-generated method stub

}

protected void keyPressed(int keyCode) {

}

}

Like commandAction() method for high level API we check the keyCode and depending on the
key code take up some specific actions.

So far, we know that there are two types of API available for building GUI and that user input can
be handled by either implementing commandAction() or keyPressed() method or both of them.
Now I will proceed with showing how to build a simple GUI using high level API. As I mentioned
before only the elements which are derived from Displayable or Screen can be displayed on the
device. Screen has 4 main subclasses each of which can be used to build GUI, and when ready, be
displayed on the screen by setting it as a current Screen. These subclasses are: Alert, List, TextBox
and Form.

• Alert: is a screen that shows data to the user and waits for a certain period of time before
proceeding to the next Screen.

• List: contains a list of choices and the set of methods to query what option have been
selected by the user.

• TextBox: allows user to input text.

• Form: can contain an arbitrary mixture of items: images, read-only text fields, editable text
fields, editable date fields, gauges, choice groups, and custom items each of which can be
attached to the form in any fashion.

The implementation handles layout, traversal and scrolling automatically. Apart from these four
derived from the Screen classes there is a number of components derived from Item class, which
can be attached to a Form and used as a building blocks of the whole GUI.

In order to handle user interface we need to define a set of commands which are then attached to
the Displayable. It can be any class which is derived from Displayable, such as: Alert, List,
TextBox, Form and also the low level API class: Canvas. Each command is represented by a
separate Command object with a name, command type and the priority. Once we have GUI and
commands defined, we need to register this Displayable object with a CommandListener, which is
done by calling setCommandListener() method on the Displayable object.

8

I will show now how to build an application which lets users type a text in one window and prints
it in the other one. It has two buttons, one for closing the application and the other one to notify the
application that the text should be printed on the screen. I will use the following elements of the
high level API: Form, TextField, StringItem and two commands for user interaction.

Code 4

public class Main extends MIDlet implements CommandListener{

Form form = null;
TextField input = null;
StringItem output = null;
Display display = null;

Command ready = null;
Command exit = null;

public Main() {

// give the form name
form = new Form("GUI Demo");
// arguments TextField: name, default text, size in letters, type
// of input
input = new TextField("Input", "Write Sth", 10, TextField.ANY);
// arguments for StringItem: label, name
output = new StringItem("Output","");
// arguments for Command: Name, type, priority
ready = new Command("Display", Command.SCREEN, 1);
exit = new Command("Exit", Command.EXIT, 1);
// get display object for this MIDlet
display = Display.getDisplay(this);
// add commands to the form
form.addCommand(ready);
form.addCommand(exit);
// add other elements to the form
form.append(input);
form.append(output);
// register the form with Command Listener
form.setCommandListener(this);

}

protected void destroyApp(boolean arg0) {
notifyDestroyed();

}

protected void pauseApp() {
// TODO Auto-generated method stub

}

protected void startApp() throws MIDletStateChangeException {

display.setCurrent(form);
}

9

public void commandAction(Command c, Displayable g) {

if(c == exit)
destroyApp(false);

else if(c == ready) {
output.setText(input.getString());

}
}

}

The first step is to defined all the building elements of the GUI. This is TextField for user input,
StringItem for the output, Form to bind all the elements together, and two Commands for user
interaction. The next step is to retrieve the Display object for this MIDlet, which is used to switch
between Screens displayed on the device. This is done by calling static method of Display class
which takes as an argument MIDlet object for which the display should be returned. Once this is
done, we add the previously defined command to the Form along with any other items by calling
addCommand() and append() method on the form respectively. The very last thing to make the
GUI work is to register it (in this case form) with the CommandListener which is accomplished
by calling setCommandListener() method on the form object. The startApp() method has also
been slightly changed. When started, MIDlet would set our GUI to be displayed on the device by
calling setCurrent(form) method on the display object which was retrieved at the beginning. Since
the GUI is ready we are able to fill in the commandAction() method to respond to user generated
events. We have two Commands: Exit in which case the destroyApp() method is called and Ready
which retrieves a string from editable text field and prints it out in the non-editable field.

5. Networking

Java Me defines an extremely flexible API for network connections. It is based around a number of
Connection interfaces each one for a particular connection type and a Connector class which is a
factory for creating new Connection Objects. MIDP specification requires devices which
implement it to support at least HttpConnection, however, most of current mobile phones
including Nokia N95 support a range of different connection types such as: CommConnection,
DatagramConnection, SocketConnection, HttpConnection, HttpsConnection (secure http) or
SocketServerConnection. Majority of these connections allow to write a client application,
however by using SocketServerConnection it is also possible to write a server application for
mobile platform. Creating Connection object is done by calling open() method of Connector class.
It takes string argument to define the type of Connection to be returned. The basic connection
descriptors are:

• SocketConnection:

socket://hostIP:portNo – connects to hostIP:portNo

10

• SocketServerConnection:

socket://:portNo – listens on port: portNo

• DatagramConnection:

datagram://:port – listens on port: portNo

datagram://hostIP:portNo – sends datagrams to hostIP:portNo

• HttpConnection:

HTTP URL

I will show a simple networking application which connects to Google server via http connection
to download and display Google map on the device screen. Since networking API we use is a
blocking API it is important to locate this code in a separate thread in order not to block the whole
application so that a user can interact with the application while map is being downloaded.

Code 5

public class Main extends MIDlet implements CommandListener{

Form form = null;
Image googleImage = null;
Display display = null;
Command displayImage = null;
Command exit = null;

public Main() {

// give the form name
form = new Form("GUI Demo");
// arguments for Command: Name, type, priority
displayImage = new Command("Image", Command.SCREEN, 1);
exit = new Command("Exit", Command.EXIT, 1);
// get display object for this MIDlet
display = Display.getDisplay(this);
// add commands to the form
form.addCommand(displayImage);
form.addCommand(exit);
// register the form with Command Listener
form.setCommandListener(this);

}

protected void destroyApp(boolean arg0) {
notifyDestroyed();

}

protected void pauseApp() {

11

}

protected void startApp() throws MIDletStateChangeException {
display.setCurrent(form);

}

public void commandAction(Command c, Displayable g) {
if(c == exit)

destroyApp(false);
else if(c == displayImage) {

Connection con = new Connection(this);
con.start();

}
}

}

public class Connection extends Thread {

Main parent = null;
String url = "";

public Connection(Main parent) {

this.parent = parent;
}

public void run() {

DataInputStream response = null;
byte[] receivedImage = null;
url = "http://maps.google.com/staticmap?center=51.510605,-
0.130728&format=png32&zoom=8&size=" +
new Integer(parent.form.getHeight()).toString() + "x" + new
Integer(parent.form.getWidth()).toString() +
"&key=ABQIAAAAnfs7bKE82qgb3Zc2YySoBT2yXp_ZAY8_ufC3CFXhHIE1NvwkxSy
Sz_REpPq-4WZA27OwgbtyR3VcA";

try {
HttpConnection c = (HttpConnection) Connector.open(url);
response = new DataInputStream(c.openInputStream());
receivedImage = new byte[(int)c.getLength()];
response.readFully(receivedImage);
System.out.println("Downloading ok");

}
catch(IOException e) {

System.out.println(e);
System.out.println("Downloading error");
Alert alert = new Alert("", "Network error", null,
 AlertType.INFO);
parent.display.setCurrent(alert, parent.form);

}
finally {

try {
response.close();

} catch(IOException e) {
System.out.println(e);

12

}
}

// image in a byte array.
// transform it in a LCUI Image object

System.out.println("Start creating image");

try {
parent.googleImage = Image.createImage(receivedImage, 0,
receivedImage.length);
System.out.println("Image init ok");

}
catch(Exception e) {

System.out.println(e);
System.out.println("Image init error");
Alert alert = new Alert("", "Image error", null,
 AlertType.INFO);
parent.display.setCurrent(alert, parent.form);

}

//display image
parent.form.deleteAll();
parent.form.append(parent.googleImage);

}
}

The Main class defines application’s user interface but it does not do any networking. Once a user
press “Display” command the application creates Connection object and runs it as a separate
Thread. Connection object initiate the http connection, downloads the image, displays it on the
screen and terminates. It is important to notice that the Connection object does not have any way of
displaying content on the device screen since it does not define any graphical user interface.
However, the user interface is defined by Main class, therefore parent reference is passed to
Connection object which can use the parent user interface to display the image on the screen.

13

