ITEC224 - Recursion (2)

(Most of the following comes from the Textbook entitled “Data Structures & Algorithms in Java” written by Robert Lafore)
A recursive binary search
Objective: To find a searchKey in an array a[]
Method: Binary search

1. Non-recursive approach

public int find(long searchKey)

{

int lowerBound = 0;

int upperBound = nElems – 1;

int curIn;

while(true)

{

curIn = (lowerBound + upperBound)/2;

if (a[curIn] == searchKey)

return curIn;

else if (lowerBound > upperBound)

return nElems; //can’t find it

else

{

if(a[curIn] < searchKey)

lowerBound = curIn + 1;

else

upperBound = curIn -1;

} // end else

} // end while

} // end find()

(O(logN)

2. Recursive approach

private int recFind(long searchKey, int lowerBound, int upperBound)

{

int curIn;

curIn = (lowerBound + upperBound)/2;

if (a[curIn] == searchKey)

return curIn;

else if (lowerBound > upperBound)

return nElems;

else

{

if (a[curIn] < searchKey)

return recFind(searchKey, curIn+1, upperBound);

else

return recFind(searchKey, lowerBound, curIn-1);

} // end else

} //end recFind()

(O(logN)

3. Divide-and-Conquer Algorithm

Def:

You divide the big problem into two (or more) smaller problems and solve each one separately.

Example:

The recursive binary search is an example of the divide-and-conquer approach. The divide-and conquer approach is commonly used with recursion. However, it is also possible to implement it using a non-recursive approach as shown in the non-recursive approach of the binary search.

A Towers of Hanoi

Objective: “(textbook p271) The disks all have different diameters and holes in the middle so they will fit over the columns. All the disks start out on column A. The object of the puzzle is to transfer all the disks from column A to column C. Only one disk can be moved at a time, and no disk can be placed on a disk that’s smaller than itself.”
1. Manually

A rule of thumb: if the subtree you’re trying to move has an odd number of disks, start by moving the topmost disk directly to the tower where you want the subtree to go. If you’re trying to move a subtree with an even number of disks, start by moving the topmost disk to the intermediate tower.

2. Non-recursive approach

Not trivial

3. Recursive approach (textbook p277)
	a. Move the subtree consisting of the top n-1 disks from S to I.

b. Move the remaining (largest) disk from S to D.

c. Move the subtree from I to D.

public static void doTowers(int topN, char from, char inter, char to)
{

if (topN == 1)

System.out.println(“Disk 1 from ” + from + “ to ” + to);

else

{

doTowers(topN-1, from, to, inter); // from (inter

System.out.println(“Disk ” + topN + “ from ” + from + “ to ” + to);

doTowers(topN-1, inter, from, to); // inter (to

} // end else

} // end doTower()

Mergesort

Objective: Given a series of numbers (or objects), decide its sequence.
Method: Merge

1. Recursive approach
private void recMergeSort(long[] workSpace, int lowerBound, int upperBound)

{

if (lowerBound == upperBound)

return;

else

{

int mid = (lowerBound+upperBound)/2;

recMergeSort(workSpace, lowerBound, mid);

recMergeSort(workSpace, mid+1, upperBound);

merge(workSpace, lowerBound, mid+1, upperBound);

} // end else

} //end recMergeSort()

* refer merge() in p289

cf. Other sorting method
O(n2)

Bubble sort: p80, p85~86

Selection sort: p91, p93~94

Insertion sort: p96, p99~100

O(n*log n)

Merge sort: p284, p287

2. Efficiency of the mergesort: O(N*logN)
Number of Copies: Table 6.4 in p292

Number of Comparisons: Table 6.5 in p293

Fibonacci Number

Objective: To generate a sequence of numbers as follows:

 f(n) = f(n-1) + f(n-2) where f(0) = 1 and f(1) = 1.

[Q] What will be a recursive method?

