http://forums.appleinsider.com/archive/index.php/t-63372.html

Big-O: The asymptotic worst case performance of an algorithm. The function n happens to be the lowest valued function that will always have a higher value than the actual running of the algorithm. [constant factors are ignored because they are meaningless as n reaches infinity]

Big-Omega. The opposite of Big-O. The asymptotic best case performance of an algorithm. The function n happens to be the highest valued function that will always have a lower value than the actual running of the algorithm. [constant factors are ignored because they are meaningless as n reaches infinity]

Big-Theta. The algorithm is so nicely behaved that some function n can describe both the algorithm's upper and lower bounds within the range defined by some constant value c. An algorithm could then have something like this: BigTheta(n), O(c1n), BigOmega(-c2n) where n == n throughout.

Little-o is like Big-O but sloppy. Big-O and the actual algorithm performance will actually become nearly identical as you head out to infinity. little-o is just some function that will always be bigger than the actual performance. Example: o(n^7) is a valid little-o for a function that might actually have linear or O(n) performance.

Little-Omega is just the opposite. w(1) [constant time] would be a valid little omega for the same above function that might actually exihbit BigOmega(n) performance.

http://en.wikipedia.org/wiki/Big_O_notation#Family_of_Bachmann.E2.80.93Landau_notations

Family of Bachmann–Landau notations
	Notation
	Name
	Intuition
	As [image: n \to \infty], eventually...
	Definition

	[image: f(n) \in O(g(n))]
	Big Omicron; Big O; Big Oh
	f is bounded above by g (up to constant factor) asymptotically
	[image: |f(n)| \leq g(n)\cdot k]for some k
	[image: \exists k>0, n_0 \; \forall n>n_0 \; |f(n)| \leq |g(n)\cdot k|]
or
[image: \exists k>0, n_0 \; \forall n>n_0 \; f(n) \leq g(n)\cdot k]

	[image: f(n) \in \Omega(g(n))](Note that, since the beginning of the 20th century, papers in number theory have been increasingly and widely using this notation in the weaker sense that f = o(g) is false)
	Big Omega
	f is bounded below by g (up to constant factor) asymptotically
	[image: f(n) \geq g(n)\cdot k]for some positive k
	[image: \exists k>0, n_0 \; \forall n>n_0 \; g(n)\cdot k \leq f(n)]

	[image: f(n) \in \Theta(g(n))]
	Big Theta
	f is bounded both above and below by g asymptotically
	[image: g(n)\cdot k_1 \leq f(n) \leq g(n)\cdot k_2]for some positive k1, k2
	[image: \exists k_1,k_2>0, n_0 \; \forall n>n_0]
[image: g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2]

	[image: f(n) \in o(g(n))]
	Small Omicron; Small O; Small Oh
	f is dominated by g asymptotically
	[image: |f(n)| \le |g(n)|\cdot \varepsilon]for every ε
	[image: \forall \varepsilon>0 \; \exists n_0 \; \forall n>n_0 \; |f(n)| \le |g(n)\cdot \varepsilon|]

	[image: f(n) \in \omega(g(n))]
	Small Omega
	f dominates g asymptotically
	[image: f(n) \ge g(n)\cdot k]for every k
	[image: \forall k>0 \; \exists n_0 \; \forall n>n_0 \; g(n)\cdot k \le f(n)]

	[image: f(n)\sim g(n)\!]
	on the order of; "twiddles"
	f is equal to g asymptotically
	[image: f(n)/g(n) \to 1]
	[image: \forall \varepsilon>0\;\exists n_0\;\forall n>n_0\;\left|{f(n) \over g(n)}-1\right|<\varepsilon]

Bachmann–Landau notation was designed around several mnemonics, as shown in the As [image: n \to \infty], eventually... column above and in the bullets below. To conceptually access these mnemonics, "omicron" can be read "o-micron" and "omega" can be read "o-mega". Also, the lower-case versus capitalization of the Greek letters in Bachmann–Landau notation is mnemonic.
· The o-micron mnemonic: The o-micron reading of [image: f(n) \in O(g(n))]and of [image: f(n) \in o(g(n))]can be thought of as "O-smaller than" and "o-smaller than", respectively. This micro/smaller mnemonic refers to: for sufficiently large input parameter(s), f grows at a rate that may henceforth be less than cg regarding [image: g \in O(f)]or [image: g \in o(f)].
· The o-mega mnemonic: The o-mega reading of [image: f(n) \in \Omega(g(n))]and of [image: f(n) \in \omega(g(n))]can be thought of as "O-larger than". This mega/larger mnemonic refers to: for sufficiently large input parameter(s), f grows at a rate that may henceforth be greater than cg regarding [image: g \in \Omega(f)]or [image: g \in \omega(f)].
· The upper-case mnemonic: This mnemonic reminds us when to use the upper-case Greek letters in [image: f(n) \in O(g(n))]and [image: f(n) \in \Omega(g(n))]: for sufficiently large input parameter(s), f grows at a rate that may henceforth be equal to cg regarding [image: g \in O(f)].
· The lower-case mnemonic: This mnemonic reminds us when to use the lower-case Greek letters in [image: f(n) \in o(g(n))]and [image: f(n) \in \omega(g(n))]: for sufficiently large input parameter(s), f grows at a rate that is henceforth inequal to cg regarding [image: g \in O(f)].
Aside from Big O notation, the Big Theta Θ and Big Omega Ω notations are the two most often used in computer science; the Small Omega ω notation is rarely used in computer science.

image5.png
Jk > 0,ngVn > ng f(n) < g(n)-k

image6.png

image7.png
f(n) > gl

image8.png
Jk > 0,n9Vn > ng g(n)-k < f(n)

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png
Ve >0 dng Vn > ng | f(n)| < |g(n) - £

image15.png

image16.png
Vk >03dngVn >nggn)-k< f(n

image17.png
f(n)~ g(n)

image18.png
f(n)/g(n) — 1

image19.png
f(n)

m—1‘<s

Ve > 0 3ng Vn > ng

image20.png

image21.png

image22.png

image23.png

image1.png

image2.png

image3.png
f(n)| <gln)-k

image4.png
Jk > 0,19 Vn > ng | f(n)| < |g(n) - k|

