ITEC324 – Advanced Sorting (1)

(Most of the following comes from the Textbook entitled “Data Structures & Algorithms in Java” written by Robert Lafore)
Shellsort: no theoretical analysis. Based on experiment, O(N3/2) ~ O(N7/6)
The Shellsort is named for Donard L. Shell, the computer scientist who discovered it in 1959.

Objective: To sort a sequence of numbers

Method: Based on the insertion sort, but adds a new feature that dramatically improves the insertion sort’s performance.

Advantages

· Good for medium-sized arrays, perhaps up to a few thousand items.

· Much faster than O(N2) sorts

· Very easy to implement – The code is short and simple

· Solves a problem of the insertion sort that it requires too many copies

Disadvantages

· Not quite as fast as quicksort and other O(N*logN) sorts, so not optimum for very large files.

[Diminishing Gaps]
· Also called Interval sequence or gap sequence

· Time complexity of Shell sort depends mainly on the interval sequence

· Suggested interval sequence

1. N/2 

a. In Shell’s original paper

b. (Advantage) don’t need to calculate the sequence

c. (Disadvantage) it sometimes degenerates to O(N2), which is no better than the insertion sort.

2. N/2.2

a. (Advantage) Better than the sequence of N/2 in terms of time complexity

b. (Disadvantage) Some extra code is needed to ensure that the last value in the sequence is 1.

3. Interval sequence suggested by Flaming based on the following code

if (h < 5)


h = 1;

else


h = (5*h – 1)/11;

4. Interval sequence suggested by Knuth based on the following equation

h = h*3 – 1

a. Known as the best interval sequence in terms of time complexity until now.

5. You can try your own interval sequence.

[Source Code of Shellsort] 

public void shellSort()

{


int inner, outer;


long temp;


int h = 1;


while (h <= nElems/3)



h = h*3 + 1;


while(h>0)


{



for (outer = h; outer < nElems; outer++)



{




temp = theArray[outer];




inner = outer;




while (inner > h – 1&& theArray[inner-h] >= temp)




{





theArray[inner] = theArray[inner-h];





inner -= h;




} // end while




theArray[inner] = temp;



} //end for



h = (h-1)/3;

//decrease h


} // end while

} // end of shellSort()

