ITEC324 – Advanced Sorting (3)

(Most of the following comes from the Textbook entitled “Data Structures & Algorithms in Java” written by Robert Lafore)
Quick Sort : Expected case O(N*log N), worst case O(N2) – cont.
[Degenerates to O(N2) Performance]

(Problem) If the data is already sorted (or inversely sorted)

(Solution) Median-of-Three Partitioning

[Median-of-Three Partitioning]
Median-of-Three

Before sorting

 Left

 center

 right

	44
	
	
	
	
	86
	
	
	
	
	29

(median is 44

After sorting

 Left

 center

 right

	29
	
	
	
	
	44
	
	
	
	
	86

In order to use the mechanism of the existing recQuickSort(), put the median at the rightmost cell.

 Left

 center

 right

	29
	
	
	
	
	86
	
	
	
	
	44

Source code of quick sort version 2

public void recQuickSort(int left, int right)

{

int size = right – left + 1;

if (size <= 3)

// manual sort if small

manualSort(left, right)

else

{

long median = medianOf3(left, right);

int partition = partitionIt(left, right, median);

recQuickSort(left, partition – 1);

recQuickSort(partition+1, right);

} //end else

}// end of recQuickSort()

public long medianOf3(int left, int right)

{

int center = (left+right)/2;

if (theArray[left] > theArray[center])

//order left & center

swap(left, center)

if (theArray[left] > theArray[right])

//order left & right

swap(left, right);

if (theArray[center] > theArray[right])
//order center & right

swap(center, right);

swap(center, right – 1);
//put pivot on right

return theArray[right-1];
//return median value

} // end of medianOf3()

[Handling Small Partitions]
· If you use the median-of-three partitioning method, the quicksort algorithm will not work for partitions of three or fewer items.

(Cutoff point

· Cutoff point 3
· Cutoff point 9 is recommended by Knuth and considered where the best performance lies. But, it will depend on your computer, operating system, compiler (or interpreter), and so on.
Source code:
public void recQuickSort(int left, int right)

{

int size = right – left + 1;

if (size < 10)

// manual sort if small

manualSort(left, right)

else

{

long median = medianOf3(left, right);

int partition = partitionIt(left, right, median);

recQuickSort(left, partition – 1);

recQuickSort(partition+1, right);

} //end else

}// end of recQuickSort()

Radix Sort : O(K(n+d)

Radix: a base of a system of numbers
[Algorithm]

Assumption: sort decimal numbers (radix: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

1. All the data items are divided into 10 groups, according to the value of their 1s digit.

2. These 10 groups are then reassembled: All the keys ending with 0 go first, followed by all the keys ending in 1, and so on up to 9. We’ll call these steps a sub-sort.

3. In the second sub-sort, all data is divided into 10 groups again, but this time according to the value of their 10s digit. Thus must be done without changing the order of the previous sort. This is, within each of the 10 groups, the ordering of the items remains the same as it was after step 2; the sub-sorts must be stable.

4. Again the 10 groups are recombined, those with a 10s digit of 0 first, then those with a 10s digits of 1m and so on up to 9.

5. This process is repeated of the remaining digits. If some keys have fewer digits than others, their higher-order digits are considered to be 0.

Example: Suppose that an input file R = {179, 208, 306, 93, 859, 984, 55, 9, 271, 33}.
(ex) K = K2K1K0 = 179. Thus, K2= 1, K1= 7, and K0 = 9.

	Initial state
	Distribute based on K2
	1st sub-sort
	Distribute based on K2
	2nd sub-sort
	Distribute based on K2
	3rd sub-sort

	172

208

306

93

859

984

55

9

271

33
	0:

1: 271

2:

3: 93, 33

4: 984

5: 55

6: 306

7:

8: 208

9: 179, 859, 9
	271

93

33

984

55

306

208

179

859

9
	0: 306, 208, 9

1:

2:

3: 33

4:

5: 55, 859

6:

7: 271, 179

8: 984

9: 93
	306

208

9

33

55

859

271

179

984

93
	0: 9,33,55,93

1: 179

2: 208,271

3: 306

4:

5:

6:

7:

8: 859

9: 984
	9

33

55

93

179

208

271

306

859

984

Efficiency of the Radix Sort: O(K(N+d)), where

1. K = the number of digits in keys
2. N = the number of key values (= the number of inputs)

3. d = the number of radix
