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What is Line Coding?

 Mapping of binary information sequence into the digital signal
that enters the channel

« Ex. “1" maps to +A square pulse; “0" to -A pulse




Line coding examples
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Polar NRZ I

Unipolar NRZ

* “1" maps to +A pulse
* “0" maps to no pulse
* High Average Power

 Long stringsof Aor O
* Poor timing
 Low-frequency content

e Simple

Polar NRZ

* “1" maps to +A/2 pulse
« “0" maps to -A/2 pulse
e Better Average Power

» Long strings of +A/2 or -A/2
* Poor timing
 Low-frequency content

e Simple



Bipolar Code

Bipolar
Encoding

» Three signal levels: {-A, 0, +A}
* “1" maps to +A or -A in alternation
* “0" maps to no pulse

e String of 1s produces a square wave
e Spectrum centered at 7/2

e Long string of Os causes receiver to lose synch
« Zero-substitution codes



Manchester code

1 0 1 0 1 1 1 0 0

Manchester |
Encoding

* “1" maps into A/2 first 7/2, -A/2 last T/2
e “0" maps into -A/2 first 7/2, A/2 last 7/2

e Every interval has transition in middle
e Timing recovery easy
* Uses double the minimum bandwidth

e Simple to implement
e Used in 10-Mbps Ethernet & other LAN standards



Differential Coding

NRZ-inverted
(differential
encoding)

Differential
Manchester
encoding

* “1" mapped into transition in signal level
 “0" mapped into no transition in signal level
* Also used with Manchester coding
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Digital Transmission Fundamentals

Error Detection and Correction




* Digital transmission systems introduce errors

* Applications require certain reliability level
e Data applications require error-free transfer
e Voice & video applications tolerate some errors

e Error control used when transmission system does not meet
application requirement

e Error control ensures a data stream is transmitted to a certain level
of accuracy despite errors

e Two basic approaches:
 Error detection & retransmission (ARQ: Automatic Retransmission Request)
« Forward error correction (FEC)



Key Idea

 All transmitted data blocks (“codewords”) satisfy a pattern
* If received block doesn't satisfy pattern, itis in error
 Redundancy: Only a subset of all possible blocks can be codewords

* Blindspot: when channel transforms a codeword into another

codeword

All inputs to channel

satisfy pattern or condition

User ,

information

Encoder |

Channel

output

-

Pattern
checking

Deliver user

— information or

set error alarm



Single Parity Check

e Append an overall parity check to k information bits
Info Bits: by, b,, bs, ..., b,

Check Bit:  b,,,=b;+ b,+ b+ ...+ b, modulo 2
Codeword: (b1, by, bs, ..., by, Dy)

e All codewords have even # of 1s

e Receiver checks to see if # of 1s is even
All error patterns that change an odd # of bits are detectable
All even-numbered patterns are undetectable

e Parity bit used in ASCII code



Example of Single Parity Code

e Information (7 bits): (0, 1,0, 1, 1,0, 0)
Parity Bit: b, =0+1+0+1+1+0="1
Codeword (8 bits): (0,1,0,1,1,0, 0, 1)

e If singleerrorinbit3:(0,1,1,1,1,0,0, 1)
e # of 1's =5, odd
e Error detected

e If errorsinbits3and5:(0,1,1,1,0,0,0, 1)
e # of 1's =4, even
e Error not detected



Two-Dimensional Parity Check

 More parity bits to improve coverage
 Arrange information as columns

* Add single parity bit to each column
e Add a final “parity” column

e Used in early error control systems

10010
01000
10010
11011
10011

Last column consists
of check bits for each
row

] O O = O

Bottom row consists of
check bit for each column



Error-detecting capability

Two errors

1, 2, or 3 errors

can always be
detected; Not all
patterns >4 errors
can be detected

Four errors
(undetectable)

100 1 0|0 100 1 0|0
0000oO0[1 0000 0|1
100 1o0fg Oneeror 1001 0|0
1101 1|0 1001 1fo
1001 1]1 100111
100 1 0|0 100 1 0|0
0001 0|1 0001 0|1
100 100 Three 100 100
100110 - °° 1000 1]0
1001 1f1 1001 1[1

Arrows indicate failed check bits



Other Error Detection Codes

« Many applications require very low error rate

* Need codes that detect the vast majority of errors

* Single parity check codes do not detect enough errors
 Two-dimensional codes require too many check bits

* The following error detecting codes used in practice:
 CRC Polynomial Codes



Polynomial Codes

 Polynomials instead of vectors for codewords

e Polynomial arithmetic instead of check sums
 Implemented using shift-register circuits

* Also called cyclic redundancy check (CRC)codes

 Most data communications standards use polynomial codes for
error detection

* Polynomial codes also basis for powerful error-correction methods



Binary Polynomial Division

e Binary vectors map to polynomials

(s B seeey oy gy dg) 2 e XN+ 0 XK2 + 0+ 0X2 + i X +

Addition:

(XT+x+ 1)+ (X0 +x°) =x"+x0+x0+x°+1
=X +(A+1)x0 + x>+ 1

=x"+x>+ 1 since 1+1=0 mod2

Multiplication:
(X+1) (x2+x+1)=x(X2+x+ 1)+ 1(X°+x+1)

=X3+ X2+ X+ (X2 +Xx+1)

=x3+1



Binary Polynomial Division

e Division with Decimal Numbers

34 guotient

35) 1222 -
105 | dividend 1222 = 34 x 35 + 32
divisor 172

140 _
32 remainder

dividend = quotient x divisor +remainder

o o o o 3 2 — tient
e Polynomial Division X2+ X2+ X q(x) quotien

X3+ x+1) x5+ x°

X0+  x*+ x3 dividend
divisor
X°+ x4+ x3
X° + X3+ X2
Note: Degree of r(x) is less than x4 + NG
degree of divisor w4 4 W2+ x

X =r(x) remainder



Polynomial Coding

* Code has binary generator polynomial of degree n-k
g(X) = XM+ gy XM+ L+ g+ X+
* k information bits define polynomial of degree k - 1
I(X) =i XKL+ X2+ 0+ X2+ X g
* Find remainder polynomial of at most degree n-k -1
q(x)
g(x) ) X"k i(x) X"Ki(x) = q(x)g(x) + r(x)
r(x)

* Define the codeword polynomial of degree n - 1

b(x) = xX"ki(x) + r(x)
n bits k bits n-k bits




Polynomial example: k=4, n-k=3

Generator polynomial: gfx)=x3+x +1
Information: (1,1,0,0) i(x) = x3 + x?2
Encoding: x3i(x) =x% + x°

X3+ X2+ X

X3+ X+ 1)x0+x°
X6 + x4 + x3

X5.|_ X4.|_ X3

X5+ X3+ X2

X4 + X2
X4 + X2+ X

X
Transmitted codeword:
b(x) = x5 + x>+ X
—> b=(1,1,0,0,0,1,0)

1110

1011 ) 1100000
1011

1110
1011

1010
1011

010



The Pattern in Polynomial Coding

* All codewords satisfy the following pattern:

b(x) = Xx™i(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x)

 All codewords are a multiple of g(x)!

» Receiver should divide received n-tuple by g(x) and check if
remainder is zero

 If remainder is nonzero, then received n-tuple is not a codeword



Standard Generator Polynomials

CRC = cyclic redundancy check

e CRC-8:

=x8+x2+x+1 ATM

e CRC-16:

=x0+xB+x2+1 Bisync
=X+ 1)(xP+x+1)

« CCITT-16:

= %16 + 12 4 ¥5 + 1 HDLC, XMODEM, V.41

e CCITT-32:

IEEE 802, DoD, V.42

:X32+ X26+ X23+X22+ X16+ X12+X11_|_ X10_|_ X8 +X7+ X5+ X4+X2+ X+ 1



	 Lecture 3 �Digital Transmission Fundamentals
	 Lecture 3 �Digital Transmission Fundamentals
	What is Line Coding?
	Line coding examples
	Unipolar & Polar �Non-Return-to-Zero (NRZ)
	Bipolar Code
	Manchester code
	Differential Coding
	 Lecture 3 �Digital Transmission Fundamentals
	 Lecture 3 �Digital Transmission Fundamentals
	Error Control
	Key Idea
	Single Parity Check
	Example of Single Parity Code
	Two-Dimensional Parity Check
	Error-detecting capability
	Other Error Detection Codes
	Polynomial Codes
	Slide Number 19
	Binary Polynomial Division
	Polynomial Coding
	Polynomial example: k = 4, n–k = 3
	The Pattern in Polynomial Coding
	Standard Generator Polynomials

