Lecture 3 Digital Transmission Fundamentals

Line Coding

Error Detection and Correction

Lecture 3 Digital Transmission Fundamentals

Line Coding

What is Line Coding?

- Mapping of binary information sequence into the digital signal that enters the channel
 - Ex. "1" maps to +A square pulse; "0" to -A pulse

Line coding examples

Unipolar & Polar Non-Return-to-Zero (NRZ)

Unipolar NRZ

- "1" maps to +A pulse
- "0" maps to no pulse
- High Average Power
- Long strings of A or 0
 - Poor timing
 - Low-frequency content
- Simple

Polar NRZ

- "1" maps to +A/2 pulse
- "0" maps to -A/2 pulse
- Better Average Power
- Long strings of +A/2 or -A/2
 - Poor timing
 - Low-frequency content
- Simple

Bipolar Code

- Three signal levels: {-A, 0, +A}
- "1" maps to +A or -A in alternation
- "0" maps to no pulse
- String of 1s produces a square wave
 - Spectrum centered at 7/2
- Long string of 0s causes receiver to lose synch
- Zero-substitution codes

Manchester code

- "1" maps into A/2 first T/2, -A/2 last T/2
- "0" maps into -A/2 first T/2, A/2 last T/2
- Every interval has transition in middle
 - Timing recovery easy
 - Uses double the minimum bandwidth
- Simple to implement
- Used in 10-Mbps Ethernet & other LAN standards

Differential Coding

- "1" mapped into transition in signal level
- "0" mapped into no transition in signal level
- Also used with Manchester coding

Lecture 3 Digital Transmission Fundamentals

Line Coding

Error Detection and Correction

Lecture 3 Digital Transmission Fundamentals

Error Detection and Correction

Error Control

- Digital transmission systems introduce errors
- Applications require certain reliability level
 - Data applications require error-free transfer
 - Voice & video applications tolerate some errors
- Error control used when transmission system does *not* meet application requirement
- Error control ensures a data stream is transmitted to a certain level of accuracy despite errors
- Two basic approaches:
 - Error detection & retransmission (ARQ: Automatic Retransmission Request)
 - Forward error correction (FEC)

Key Idea

- All transmitted data blocks ("codewords") satisfy a pattern
- If received block doesn't satisfy pattern, it is in error
- Redundancy: Only a subset of all possible blocks can be codewords
- Blindspot: when channel transforms a codeword into another codeword

Single Parity Check

Append an overall parity check to k information bits

Info Bits:
$$b_1, b_2, b_3, ..., b_k$$
Check Bit: $b_{k+1} = b_1 + b_2 + b_3 + ... + b_k$ modulo 2
Codeword: $(b_1, b_2, b_3, ..., b_k, b_{k+1})$

- All codewords have even # of 1s
- Receiver checks to see if # of 1s is even
 - All error patterns that change an odd # of bits are detectable
 - All even-numbered patterns are undetectable
- Parity bit used in ASCII code

Example of Single Parity Code

- Information (7 bits): (0, 1, 0, 1, 1, 0, 0)Parity Bit: $b_8 = 0 + 1 + 0 + 1 + 1 + 0 = 1$ Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1)
- If single error in bit 3: (0, 1, 1, 1, 1, 0, 0, 1)
 - # of 1's =5, odd
 - Error detected
- If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1)
 - # of 1's =4, even
 - Error not detected

Two-Dimensional Parity Check

- More parity bits to improve coverage
- Arrange information as columns
- Add single parity bit to each column
- Add a final "parity" column
- Used in early error control systems

Bottom row consists of check bit for each column

Error-detecting capability

Arrows indicate failed check bits

Other Error Detection Codes

- Many applications require very low error rate
- Need codes that detect the vast majority of errors
- Single parity check codes do not detect enough errors
- Two-dimensional codes require too many check bits
- The following error detecting codes used in practice:
 - CRC Polynomial Codes

Polynomial Codes

- Polynomials instead of vectors for codewords
- Polynomial arithmetic instead of check sums
- Implemented using shift-register circuits
- Also called cyclic redundancy check (CRC) codes
- Most data communications standards use polynomial codes for error detection
- Polynomial codes also basis for powerful error-correction methods

Binary Polynomial Division

Binary vectors map to polynomials

$$(i_{k-1}, i_{k-2}, \dots, i_2, i_1, i_0) \rightarrow i_{k-1}x^{k-1} + i_{k-2}x^{k-2} + \dots + i_2x^2 + i_1x + i_0$$

Addition:

$$(x^7 + x^6 + 1) + (x^6 + x^5) = x^7 + x^6 + x^6 + x^5 + 1$$

= $x^7 + (1+1)x^6 + x^5 + 1$
= $x^7 + x^5 + 1$ since $1+1=0$ mod2

Multiplication:

$$(x+1) (x^2 + x + 1) = x(x^2 + x + 1) + 1(x^2 + x + 1)$$
$$= x^3 + x^2 + x + (x^2 + x + 1)$$
$$= x^3 + 1$$

Binary Polynomial Division

Division with Decimal Numbers

• Polynomial Division

$$x^{3} + x^{2} + x = q(x) \text{ quotient}$$

$$x^{3} + x + 1) x^{6} + x^{5}$$

$$x^{6} + x^{4} + x^{3} \qquad \text{dividend}$$

$$x^{5} + x^{4} + x^{3}$$

$$x^{5} + x^{3} + x^{2}$$

$$x^{4} + x^{2} + x$$

$$x^{4} + x^{2} + x$$

Note: Degree of r(x) is less than degree of divisor

divisor

$$X = r(x)$$
 remainder

Polynomial Coding

Code has binary generator polynomial of degree n-k

$$g(x) = x^{n-k} + g_{n-k-1}x^{n-k-1} + \dots + g_2x^2 + g_1x + 1$$

• k information bits define polynomial of degree k - 1

$$i(x) = i_{k-1}x^{k-1} + i_{k-2}x^{k-2} + \dots + i_2x^2 + i_1x + i_0$$

• Find remainder polynomial of at most degree n - k - 1

$$g(x)) x^{n-k} i(x)$$

$$r(x)$$

$$X^{n-k} i(x) = q(x)g(x) + r(x)$$

• Define the codeword polynomial of degree n - 1

Polynomial example: k = 4, n-k = 3

Generator polynomial: $g(x) = x^3 + x + 1$

Information: (1,1,0,0) $i(x) = x^3 + x^2$

Encoding: $x^{3}i(x) = x^{6} + x^{5}$

$$x^{3} + x^{2} + x$$

$$x^{3} + x + 1) x^{6} + x^{5}$$

$$x^{6} + x^{4} + x^{3}$$

$$x^{5} + x^{4} + x^{3}$$

$$x^{5} + x^{3} + x^{2}$$

$$x^{4} + x^{2}$$

$$x^{4} + x^{2} + x$$

$$x$$

Transmitted codeword:

$$b(x) = x^{6} + x^{5} + x$$

$$\underline{b} = (1,1,0,0,0,1,0)$$

The *Pattern* in Polynomial Coding

All codewords satisfy the following pattern:

$$b(x) = x^{n-k}i(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x)$$

- All codewords are a multiple of g(x)!
- Receiver should divide received n-tuple by g(x) and check if remainder is zero
- If remainder is nonzero, then received n-tuple is not a codeword

Standard Generator Polynomials

CRC = cyclic redundancy check

• CRC-8:

$$= x^8 + x^2 + x + 1$$

ATM

• CRC-16:

$$= x^{16} + x^{15} + x^2 + 1$$

= $(x + 1)(x^{15} + x + 1)$

Bisync

• CCITT-16:

$$= x^{16} + x^{12} + x^5 + 1$$

HDLC, XMODEM, V.41

• CCITT-32:

IEEE 802, DoD, V.42

$$= X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$$