Lecture 4 Peer-to-Peer Protocols and Data Link Layer

ARQ Protocols and Reliable Data Transfer Flow Control

Peer-to-Peer Protocols and Data Link Layer

ARQ Protocols and Reliable Data Transfer

Peer-to-Peer Protocols

- many protocols involve the interaction between two peers
 - Service Models are discussed & examples given
 - Detailed discussion of ARQ provides example of development of peerto-peer protocols
 - Flow control

Automatic Repeat Request (ARQ)

- Purpose: to ensure a sequence of information packets is delivered in order and without errors or duplications despite transmission errors & losses
- We will look at:
 - Stop-and-Wait ARQ
 - Go-Back N ARQ
 - Selective Repeat ARQ
- Basic elements of ARQ:
 - Error-detecting code with high error coverage
 - ACKs (positive acknowledgments)
 - NAKs (negative acknowlegments)
 - Timeout mechanism

Stop-and-Wait ARQ

Transmit a frame, wait for ACK

Need for Sequence Numbers

- In cases (a) & (b) the transmitting station A acts the same way
- But in case (b) the receiving station B accepts frame 1 twice
- Question: How is the receiver to know the second frame is also frame 1?
- Answer: Add frame sequence number in header
- S_{last} is sequence number of most recent transmitted frame

Sequence Numbers

(c) Premature Time-out

- The transmitting station A misinterprets duplicate ACKs
- Incorrectly assumes second ACK acknowledges Frame 1
- Question: How is the receiver to know second ACK is for frame 0?
- Answer: Add frame sequence number in ACK header
- R_{next} is sequence number of next frame expected by the receiver
- Implicitly acknowledges receipt of all prior frames

Stop-and-Wait ARQ

Transmitter

Ready state

- Await request from higher layer for packet transfer
- When request arrives, transmit frame with updated S_{last} and CRC
- Go to Wait State

Wait state

- Wait for ACK or timer to expire; block requests from higher layer
- If timeout expires
 - retransmit frame and reset timer
- If ACK received:
 - If sequence number is incorrect or if errors detected: ignore ACK
 - If sequence number is correct ($R_{next} = S_{last} + 1$): accept frame, go to Ready state

Receiver

Always in Ready State

- Wait for arrival of new frame
- When frame arrives, check for errors
- If no errors detected and sequence number is correct (S_{last}=R_{next}), then
 - · accept frame,
 - update R_{next},
 - send ACK frame with R_{next},
 - deliver packet to higher layer
- If no errors detected and wrong sequence number
 - · accept frame
 - send ACK frame with R_{next}
- If errors detected
 - discard frame

Sliding Window Protocols

Suppose that a sliding window of size is 1, with a 3-bit sequence number.

- (a) Initially.
- (b) After the first frame has been sent.
- (c) After the first frame has been received.
- (d) After the first acknowledgement has been received.

Practice on Slide Window Protocols

 Draw a series of buffers at a sender and a receiver which illustrates the following (a), (b), (c), and (d).

Suppose that a sliding window of size is has a 3-bit sequence number. Thus, each of them has 8 buffers.

- (a) Initially. The receiver knows that the sender will send a data.
- (b) After the first frame has been sent.
- (c) After the first frame has been received & the ACK has been sent by the receiver.
- (d) After the first acknowledgement has been received.

Stop-and-Wait Efficiency

- 10000 bit frame @ 1 Mbps takes 10 ms to transmit
- If wait for ACK = 1 ms, then efficiency = 10/11= 91%
- If wait for ACK = 20 ms, then efficiency = 10/30 = 33%

Applications of Stop-and-Wait ARQ

- IBM *Binary Synchronous Communications protocol* (Bisync): character-oriented data link control
- Xmodem: modem file transfer protocol
- Trivial File Transfer Protocol (RFC 1350): simple protocol for file transfer over UDP

Go-Back-N

- Improve Stop-and-Wait by not waiting!
- Keep channel busy by continuing to send frames
- Allow a window of up to W_s outstanding frames
- Use *m*-bit sequence numbering
- If ACK for oldest frame arrives before window is exhausted, we can continue transmitting
- If window is exhausted, pull back and retransmit all outstanding frames
- Alternative: Use timeout

Go-Back-N ARQ

- Frame transmission are *pipelined* to keep the channel busy
- Frame with errors and subsequent out-of-sequence frames are ignored
- Transmitter is forced to go back when window of 4 is exhausted

Applications of Go-Back-N ARQ

- HDLC (High-Level Data Link Control): bit-oriented data link control
- *V.42 modem*: error control over telephone modem links

Selective Repeat ARQ

- Go-Back-N ARQ inefficient because multiple frames are resent when errors or losses occur
- Selective Repeat retransmits only an individual frame
 - Timeout causes individual corresponding frame to be resent
 - NAK causes retransmission of oldest un-acked frame
- Receiver maintains a receive window of sequence numbers that can be accepted
 - Error-free, but out-of-sequence frames with sequence numbers within the receive window are buffered
 - Arrival of frame with R_{next} causes window to slide forward by 1 or more

Selective Repeat ARQ

Applications of Selective Repeat ARQ

- TCP (Transmission Control Protocol): transport layer protocol uses variation of selective repeat to provide reliable stream service
- Service Specific Connection Oriented Protocol: error control for signaling messages in ATM networks

Lecture 4 Peer-to-Peer Protocols and Data Link Layer

ARQ Protocols and Reliable Data Transfer Flow Control

Peer-to-Peer Protocols and Data Link Layer

Flow Control

Flow Control

- Receiver has limited buffering to store arriving frames
- Several situations cause buffer overflow
 - Mismatch between sending rate & rate at which user can retrieve data
 - Surges in frame arrivals
- Flow control prevents buffer overflow by regulating rate at which source is allowed to send information

Window Flow Control

- Sliding Window ARQ method with W_s equal to buffer available
 - Transmitter can never send more than W_s frames
- ACKs that slide window forward can be viewed as permits to transmit more
- Can also pace ACKs as shown above
 - Return permits (ACKs) at end of cycle regulates transmission rate
- Problems using sliding window for both error & flow control
 - Interplay between transmission rate & retransmissions