Lecture 6 Communication Networks and Services

Internet Routing Protocols DHCP, NAT, and Mobile IP

Lecture 6 Communication Networks and Services

Internet Routing Protocols

Outline

- Basic Routing
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)

Autonomous Systems

- Global Internet viewed as collection of autonomous systems.
- Autonomous system (AS) is a set of routers or networks administered by a single organization
- Same routing protocol need not be run within the AS
- But, to the outside world, an AS should present a consistent picture of what ASs are reachable through it
- Stub AS: has only a single connection to the outside world.
- Multihomed AS: has multiple connections to the outside world, but refuses to carry transit traffic
- Transit AS: has multiple connections to the outside world, and can carry transit and local traffic.

AS Number

- For exterior routing, an AS needs a globally unique AS 16-bit integer number
- Currently, there are about 11,000 registered ASs in Internet (and growing)
- Stub AS, which is the most common type, does not need an AS number since the prefixes are placed at the provider's routing table
- Transit AS needs an AS number
- Request an AS number from one of the five RIRs (Regional Internet Registries)
 - ARIN: American Registry for Internet Numbers
 - RIPE NCC: Réseaux IP Européens Network Coordination Centre
 - APNIC: Asia Pacific Network Information Centre
 - LACNIC: Latin America and Caribbean Network Information Centre
 - AFRINIC: African Network Information Centre

Inter and Intra Domain Routing

Interior Gateway Protocol (IGP): routing within AS

• RIP, OSPF, IGRP, EIGRP, IS-IS

Exterior Gateway Protocol (EGP): routing between AS's

• BGPv4

Border Gateways perform IGP & EGP routing

Inter and Intra Domain Routing

Routing Protocols Evolution and Classification

	Interior Gateway Protocols				Exterior Gateway Protocols
	Distance Vector	Routing Protocols	Link State Routing Protocols		Path Vector
Classful	RIP	IGRP			EGP
Classless	RIPv2	EIGRP	OSPFv2	IS-IS	BGPv4
IPv6	RIPng	EIGRP for IPv6	OSPFv3	IS-IS for IPv6	BGPv4 for IPv6

Highlighted routing protocols are the focus of this course.

Image Source: www.netacad.com

Inter and Intra Domain Routing

Outline

- Basic Routing
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)

Routing Information Protocol (RIP)

- RFC 1058
- Uses the distance-vector algorithm
- Runs on top of UDP, port number 520
- Metric: number of hops
- Max limited to 15
 - suitable for small networks (local area environments)
 - value of 16 is reserved to represent infinity
 - small number limits the count-to-infinity problem

RIP Operation

- Router sends update message to neighbors every 30 sec
- A router expects to receive an update message from each of its neighbors within 180 seconds in the worst case
- If router does not receive update message from neighbor X within this limit, it assumes the link to X has failed and sets the corresponding minimum cost to 16 (infinity)
- Uses split horizon with poisoned reverse

RIP Protocol

- Routers run RIP in active mode (advertise distance vector tables)
- Hosts can run RIP in passive mode (update distance vector tables, but do not advertise)
- RIP datagrams broadcast over LANs & specifically addressed on ptpt or multi-access non-broadcast nets
- Two RIP packet types:
 - request to ask neighbor for distance vector table
 - response to advertise distance vector table
 - periodically; in response to request; triggered

Outline

- Basic Routing
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)

Open Shortest Path First

- RFC 2328 (v2)
- Fixes some of the deficiencies in RIP
- Enables each router to learn complete network topology
- Each router monitors the link state to each neighbor and floods the link-state information to other routers
- Each router builds an identical link-state database
- Allows router to build shortest path tree with router as root
- OSPF typically converges faster than RIP when there is a failure in the network

OSPF Features

- Multiple routes to a given destination, one per type of service
- Support for *variable-length subnetting* by including the subnet mask in the routing message
- Distribution of traffic over *multiple paths* of equal cost
- Uses notion of area to partition sites into subsets
- Support host-specific routes as well as net-specific routes
- Designated router to minimize table maintenance overhead

Flooding

- Used in OSPF to distribute link state (LS) information
- Forward incoming packet to all ports except where packet came in
- Packet eventually reaches destination as long as there is a path between the source and destination
- Generates exponential number of packet transmissions
- Approaches to limit # of transmissions:
 - Use a TTL at each packet; won't flood if TTL is reached
 - Each router adds its identifier to header of packet before it floods the packet; won't flood if its identifier is detected
 - Each packet from a given source is identified with a unique sequence number; won't flood if sequence number is same

Example OSPF Topology

- At steady state:
- All routers have same LS database
- Know how many routers in network
- Interfaces & links between routers
- Cost of each link
- Occasional Hello messages (10 sec) & LS updates sent (30 min)

OSPF Network

- To improve scalability, AS may be partitioned into areas
 - Area is identified by 32-bit Area ID
 - Router in area only knows complete topology inside area & limits the flooding of linkstate information to area
 - Area border routers summarize info from other areas
- Each area must be connected to backbone area (0.0.0.0)
 - Distributes routing info between areas
- Internal router has all links to nets within the same area
- Area border router has links to more than one area
- Backbone router has links connected to the backbone

OSPF Areas

Neighbor, Adjacent & Designated Routers

- Neighbor routers: two routers that have interfaces to a common network
 - Neighbors are discovered dynamically by Hello protocol
- Each neighbor of a router described by a state
- Adjacent router: neighbor routers become adjacent when they synchronize topology databases by exchange of link state information
 - Neighbors on point-to-point links become adjacent
 - Routers on multiaccess nets become adjacent only to designated router (DR)
 & backup designated routers (BDR)
 - Reduces size of topological database & routing traffic

Designated Routers

- Reduces number of adjacencies
- Elected by each multiaccess network after neighbor discovery by hello protocol
- Election based on priority & id fields
- Generates link advertisements that list routers attached to a multi-access network
- Forms adjacencies with routers on multi-access network
- Backup prepared to take over if designated router fails

Link State Advertisements

- Link state info exchanged by adjacent routers to allow
 - area topology databases to be maintained
 - inter-area & inter-AS routes to be advertised

OSPF Protocol

- OSPF packets transmitted directly on IP datagrams; Protocol ID 89
- OSPF packets sent to multicast address 224.0.0.5 (allOSPFRouters on pt-2-pt and broadcast nets)
- OSPF packets sent on specific IP addresses on non-broadcast nets
- Five OSPF packet types:
 - Hello
 - Database description
 - Link state request; Link state update; Link state ack

OSPF Header

• Type: Hello, Database description, Link state request, Link state update, Link state acknowledgements

OSPF Stages

- 1. Discover neighbors by sending Hello packets (every 10 sec) and designated router elected in multiaccess networks
- 2. Adjacencies are established & link state databases are synchronized
- 3. Link state information is propagated & routing tables are calculated

Outline

- Basic Routing
- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)

Exterior Gateway Protocols

- Within each AS, there is a consistent set of routes connecting the constituent networks
- The Internet is woven into a coherent whole by Exterior Gateway Protocols (EGPs) that operate between AS's
- EGP enables two AS's to exchange routing information about:
 - The networks that are contained within each AS
 - The AS's that can be reached through each AS
- EGP path selection guided by policy rather than path optimality
 - Trust, peering arrangements, etc

EGP Example

- R4 advertises that network N1 can be reached through AS3
- R3 examines announcement & applies policy to decide whether it will forward packets to N1 through R4
- If yes, routing table updated in R3 to indicate R4 as next hop to N1
- IGP propagates N1 reachability information through AS2

EGP Example

- EGP routers within an AS, e.g. R3 and R2, are kept consistent
- Suppose AS2 willing to handle transit packets from AS1 to N1
- R2 advertises to AS1 the reachability of N1 through AS2
- R1 applies its policy to decide whether to send to N1 via AS2

Peering and Inter-AS connectivity

- Non-transit AS's (stub & multihomed) do not carry transit traffic
- Tier 1 ISPs peer with each other, privately & peering centers
- Tier 2 ISPs peer with each other & obtain transit services from Tier 1s;
 Tier 1's carry transit traffic between their Tier 2 customers
- Client AS's obtain service from Tier 2 ISPs

EGP Requirements

- Scalability to global Internet
 - Provide connectivity at global scale
 - Link-state does not scale
 - Should promote address aggregation
 - Fully distributed
- EGP path selection guided by policy rather than path optimality
 - Trust, peering arrangements, etc
 - EGP should allow flexibility in choice of paths

Border Gateway Protocol v4

- BGP (RFC 1771) an EGP routing protocol to exchange network reachability information among BGP routers (also called BGP speakers)
- Network reachability info contains sequence of ASs that packets traverse to reach a destination network
- Info exchanged between BGP speakers allows a router to construct a graph of AS connectivity
 - Routing loops can be pruned
 - Routing policy at AS level can be applied

BGP Features

- BGP is path vector protocol: advertises sequence of AS numbers to the destination network
- Path vector info used to prevent routing loops
- BGP enforces policy through selection of different paths to a destination and by control of redistribution of routing information
- Uses CIDR to support aggregation & reduction of routing information

BGP Speaker & AS Relationship

- BGP speaker: a router running BGP
- Peers or neighbors: two speakers exchanging information on a connection
- BGP peers use TCP (port 179) to exchange messages
- Initially, BGP peers exchange entire BGP routing table
 - Incremental updates sent subsequently
 - Reduces bandwidth usage and processing overhead
 - Keepalive messages sent periodically (30 seconds)
- Internal BGP (iBPG) between BGP routers in same AS
- External BGP (eBGP) connections across AS borders

iBGP & eBGP

- eBGP to exchange reachability information in different AS's
 - eBGP peers directly connected
- iBGP to ensure net reachability info is consistent among the BGP speakers in the same AS
 - usually not directly connected
 - iBGP speakers exchange info learned from other iBGP speakers, and thus fully meshed

Path Selection

- Each BGP speaker
 - Evaluates paths to a destination from an AS border router
 - Selects the best that complies with policies
 - Advertises that route to all BGP neighbors
- BGP assigns a preference order to each path & selects path with highest value; BGP does not keep a cost metric to any path
- When multiple paths to a destination exist, BGP maintains all of the paths, but only advertises the one with highest preference value

BGP Policy

- Examples of policy:
 - Never use AS X
 - Never use AS X to get to a destination in AS Y
 - Never use AS X and AS Y in the same path
- Import policies to accept, deny, or set preferences on route advertisements from neighbors
- Export policies to determine which routes should be advertised to which neighbors
 - A route is advertised only if AS is willing to carry traffic on that route

(Ex) Typical BGP Policies

- Typical policies involve political, security, or economic considerations.
 - No transit traffic through certain ASes.
 - Never put Iraq on a route starting at the Pentagon.
 - Do not use the United States to get from British Columbia to Ontario.
 - Only transit Albania if there is not alternative to the destination.
 - Traffic starting or ending at IBM should not transit Microsoft.

BGP Protocol

- Opening & confirming of a BGP connection with a neighbor router
- Maintaining the BGP connection
- Sending reachability information
- Notification of error conditions

Lecture 6 Communication Networks and Services

Internet Routing Protocols DHCP, NAT, and Mobile IP

Lecture 6 Communication Networks and Services

DHCP, NAT, and Mobile IP

DHCP

- Dynamic Host Configuration Protocol (RFC 2131)
- BOOTP (RFC 951, 1542) allows a diskless workstation to be remotely booted up in a network
 - UDP port 67 (server) & port 68 (client)
- DHCP builds on BOOTP to allow servers to deliver configuration information to a host
 - Used extensively to assign temporary IP addresses to hosts
 - Allows ISP to maximize usage of their limited IP addresses

DHCP Operation

- Host broadcasts DHCP Discover message on its physical network
- Server replies with Offer message (IP address + configuration information)
- Host selects one offer and broadcasts DHCP Request message
- Server allocates IP address for lease time T
 - Sends DHCP ACK message with T, and threshold times T1 (=1/2 T) and T2 (=.875T)
- At T1, host attempts to renew lease by sending DHCP Request message to original server
- If no reply by T2, host broadcasts DHCP Request to any server
- If no reply by T, host must relinquish IP address and start from the beginning

Network Address Translation (NAT)

- Class A, B, and C addresses have been set aside for use within private internets
 - Packets with private ("unregistered") addresses are discarded by routers in the global Internet
- NAT (RFC 1631): method for mapping packets from hosts in private internets into packets that can traverse the Internet
 - A device (computer, router, firewall) acts as an agent between a private network and a public network
 - A number of hosts can share a limited number of registered IP addresses
 - Static/Dynamic NAT: map unregistered addresses to registered addresses
 - Overloading: maps multiple unregistered addresses into a single registered address (e.g. Home LAN)

NAT Operation (Overloading)

- Hosts inside private networks generate packets with private IP address & TCP/UDP port #s
- NAT maps each private IP address & port # into shared global IP address & available port #
- Translation table allows packets to be routed unambiguously

Review: Routable and Nonroutable Addresses

- Nonroutable Address [RFC 1918]
 - Internet Router ignore the following addresses.
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255
 - Millions of networks can exist with the same nonroutable address.
 - "Intranet": Internal Internet
 - NAT (Network Address Translation) router
 - Side benefit: "Security"

Mobile IP

- Proliferation of mobile devices: PDAs, laptops, cellphones, ···
- As user moves, point-of-attachment to network necessarily changes
- Problem: IP address specifies point-of-attachment to Internet
 - Changing IP address involves terminating all connections & sessions
- Mobile IP (RFC 2002): device can change point-of-attachment while retaining IP address and maintaining communications

Routing in Mobile IP

- Home Agent (HA) keeps track of location of each Mobile Host (MH) in its network; HA periodically announces its presence
- If an MH is in home network, e.g. MH#1, HA forwards packets directly to MH
- When an MH moves to a Foreign network, e.g. MH#2, MH obtains a careof-address from foreign agent (FA) and registers this new address with its HA

Routing in Mobile IP

- Correspondent Host (CH) sends packets as usual (1)
- Packets are intercepted by HA which then forwards to Foreign Agent (FA) (2)
- FA forwards packets to the MH
- MH sends packet to CH as usual (3)
- How does HA send packets to MH in foreign network?

IP-to-IP Encapsulation

- HA uses IP-to-IP encapsulation
- IP packet has MH IP address
- Outer IP header has HA's address as source address and care-of-address as destination address
- FA recovers IP packet and delivers to MH

Route Optimization

- Going to HA inefficient if CH and MH are in same foreign network
- When HA receives pkt from CH (1), it tunnels using care-of-address (2a); HA also sends care-of-address to CH (2b)
- CH can then send packets directly to care-of-address (4)