Lecture 8 Network Security Basics

Symmetric Key Cryptography Asymmetric Key Cryptography Public Key Cryptography RSA

Friends and Enemies: Alice, Bob, Trudy

- Well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy, the "intruder" may intercept, delete, add messages

The language of cryptography

Symmetric key crypto: sender, receiver keys identical

Asymmetric key crypto: sender key ≠ receiver key

(ex) public-key crypto - encrypt key public, decrypt key secret

Symmetric key cryptography

Substitution Cipher: substituting one thing for another

• monoalphabetic cipher: substitute one letter for another

```
plaintext: abcdefghijklmnopqrstuvwxyz
```

ciphertext: mnbvcxzasdfghjklpoiuytrewq

E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

- How hard to break this simple cipher?:
 - brute force (how hard?)
 - other?

Symmetric key cryptography

DES: Data Encryption Standard

- US encryption standard [NIST]
- 56-bit symmetric key, 64 bit plaintext input
- How secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase ("Strong cryptography makes the world a safer place") decrypted (brute force) in 4 months
 - no known "backdoor" decryption approach
- making DES more secure
 - use three keys sequentially (3-DES) on each datum
 - use cipher-block chaining
- → AES: Advanced Encryption Standard [NIST]

Symmetric key crypto: DES

DES operation

- 1. initial permutation
- 16 identical "rounds" of function application, each using different 48 bits of key
- 3. final permutation

→ AES (Advanced Encryption Standard)

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key cryptography

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- encryption key public (known to all)
- decryption key private (known only to receiver)

Public key cryptography

Public key encryption algorithms

Two inter-related requirements:

- 1 need $d_{B}(\bullet)$ and $e_{B}(\bullet)$ such that $d_{B}(e_{B}(m)) = m$
- 2 need public and private keys for d_g(•) and e_g(•)

RSA: Rivest, Shamir, Adelson algorithm

RSA: Choosing keys

- 1. Choose two large prime numbers *p, q.* (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose *e* (with *e<n*) that has no common factors with z. (*e, z* are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. *Public* key is (n,e). *Private* key is (n,d).

RSA: Encryption, Decryption

- 0. Given (n,e) and (n,d) as computed above
- 1. To encrypt bit pattern, m, compute $c = m^e \mod n \text{ (i.e., remainder when } m^e \text{ is divided by } n)$
- 2. To decrypt received bit pattern, c, compute $m = c^d \mod n$ (i.e., remainder when c^d is divided by n)

```
Magic happens! m = (m^e \mod n)^d \mod n
```

RSA example

```
Bob chooses p = 5, q = 7. Then n = 35, z = 24.

e = 5 (so e and z are relatively prime).

d = 29 (so ed - 1 exactly divisible by z).
```

encrypt:
$$\frac{\text{letter}}{1}$$
 $\frac{m}{12}$ $\frac{m^e}{248832}$ $\frac{c = m^e \mod n}{17}$ $\frac{c}{17}$ $\frac{c}{481968572106750915091411825223072000}$ $\frac{m = c^d \mod n}{12}$ $\frac{\text{letter}}{12}$

RSA: Why?

$$m = (m^e \mod n)^d \mod n$$

Number theory result: If
$$p,q$$
 prime, $n = pq$, then
$$x^{V} \mod n = x^{V} \mod (p-1)(q-1) \mod n$$

$$(m^{e} \mod n)^{d} \mod n = m^{ed} \mod n$$

$$= m^{ed} \mod (p-1)(q-1) \mod n$$

$$(using number theory result above)$$

$$= m^{1} \mod n$$

$$(since we chose ed to be divisible by $(p-1)(q-1)$ with remainder 1)
$$= m$$$$