
Lecture 1 Review of Computer Network Fundamentals

What is Computer Networks?

- A collection of autonomous computers interconnected by a single or multiple technologies
 - Interconnected via:
 - Copper wire
 - Fiber optics
 - Microwaves
 - Infrared
 - Communication satellites, etc.

OSI Reference Model & TCP/IP Protocol Stack

Application

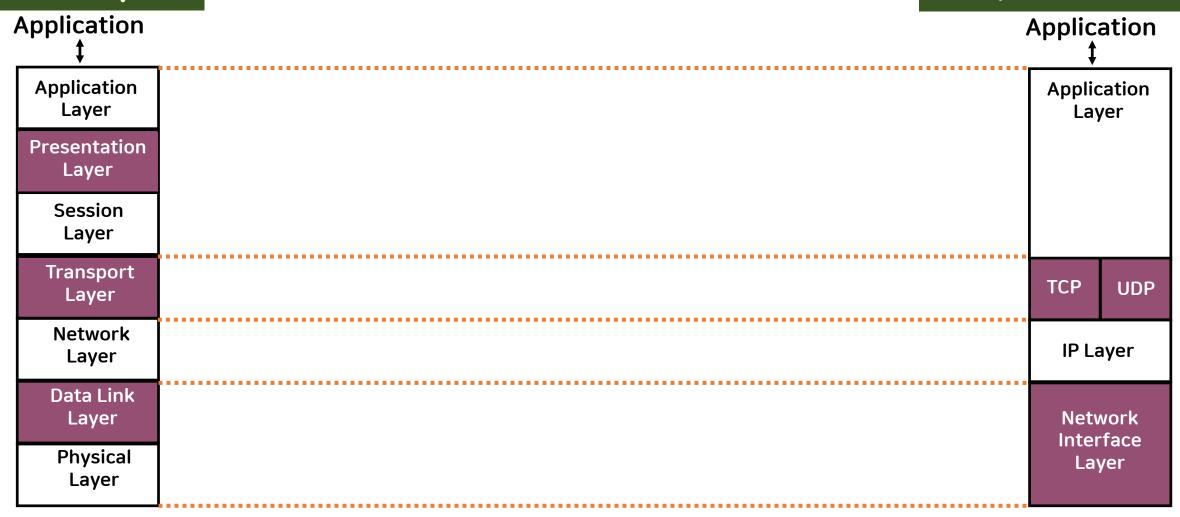
Application Layer

Presentation Layer

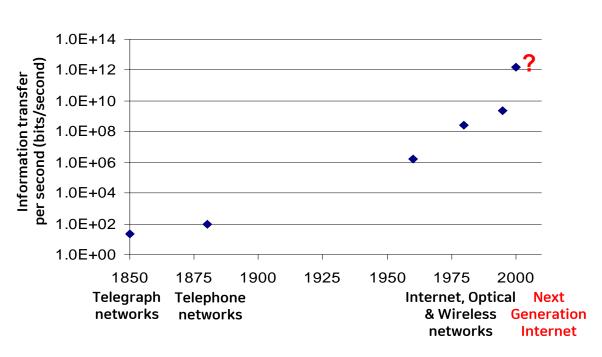
> Session Layer

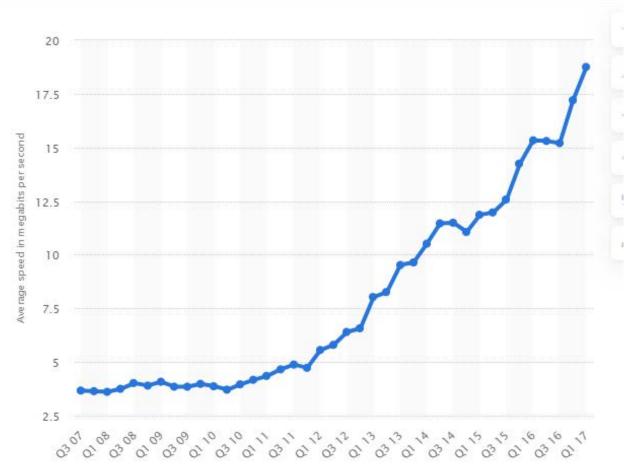
Transport Layer

Network Layer


Data Link Layer

Physical Layer


OSI Reference Model & TCP/IP Protocol Stack


OSI 7 Layers

TCP/IP Protocol

Network Architecture Evolution

Classification of interconnected processors by scale.

Processors located in same	Example
Square meter	Personal area network
Room	
Building	Local area network
Campus	
City	Metropolitan area network
Country	Mida ana anatanada
Continent	├ Wide area network
Planet	The Internet
	located in same Square meter Room Building Campus City Country Continent

Metric Units

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000	Peta
10 ⁻¹⁸	0.00000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 -21	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

The principal metric prefixes.

IP Addresses

- An IP Packet can be sent to
 - A single workstation (unicast)
 - Efficient for data between pairs of addresses
 - A specific list of workstations (multicast)
 - Efficient for specific groups, but must specify all individual workstations IP addresses
 - All stations on a network (broadcast)
 - Efficient for large (unknown) group use special broadcast IP address.
- IP addresses have a special broadcast address
- Class .vs. Classless Addressing.
- Internet Assigned Numbers Authority (IANA)

IP Address Ranges, Or "Classes"

From:	To:	Description
1.x.x.x	126.x.x.x	Class A license
127.x.x.x	127.x.x.x	Loop back
128.x.x.x	191.x.x.x	Class B license (172.16 thru 31.0.0 reserved for private addresses)
192.x.x.x	223.x.x.x	Class C license (192, 168, x, 0 reserved for private addresses)
224.0.0.0	224.0.0.255	Multicast: Reserved Link Local Addresses
224.0.1.0	238.255.255.255	Multicast: Globally Scoped Addresses
239.0.0.0	239.255.255.255	Multicast: Limited Scope Addresses
240.x.x.x	255.255.255.254	Experimental
255.255.255		Broadcast

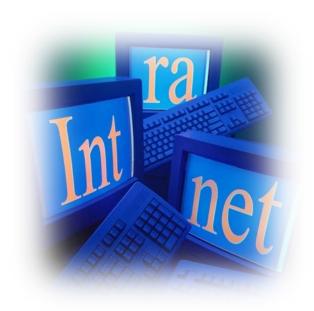
IP Addressing and Subnetting

"Anding" a Binary Subnet Mask

subnet ID = (137.45.104.0)

Recap: Network Classes

- IANA (Internet Assigned Numbers Authority)
- Class A
 - IP address := <8bits>.<24bits>
 - 16 Million hosts in a class A network domain
- Class B
 - IP address = <16bits>.<16bits>
 - 65534 hosts in a class B network domain
- Class C
 - IP address = <24bits>.<8bits>
 - 256 hosts in a class C network domain
- → Waste of Address Range~!



Note on Classful vs. Classless

- Note that, in classful subnetting, we lose quite a few blocks of addresses.
- RFC 1519 (Classless Inter-Domain Routing = CIDR) was introduced in 1993 to deal with rapid depletion of IP address space due to "Classful Fragmentation"
- Problem:
 - Given the entire internet was "classful" in 1993, how to transition to classless methods?
 - What exactly is the impact to internet protocols (in all the millions of devices and hosts) of such a change?

Routable and Nonroutable Addresses

- Nonroutable Address [RFC 1918]
 - Internet Router ignore the following addresses.
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255
 - Millions of networks can exist with the same nonroutable address.
 - "Intranet": Internal Internet
 - NAT (Network Address Translation) router
 - Side benefit: "Security"

VLSM (Variable Length Subnet Masking)

- Can support variable length of subnet id in a single domain
- How?
 - Decide the necessary number of bits for a host id first
 - Then, get the number of bits for a subnet id

VLSM: Sample Question

- [Given] IP Addr 192.3.4.0/24
 - AtlantaHQ: 58 hosts
 - PerthHQ: 26 hosts
 - SydneyHQ: 10 hosts
 - CorpusHQ:10 hosts
 - WAN1: 2 IP addresses
 - WAN2: 2 IP addresses
 - WAN3: 2 IP addresses
- →Give a subnet address, an address range, a broadcast address, and a network prefix

Reference: Cisco Network Fundamental course

Standards

- New technologies very costly and risky
- Standards allow players to share risk and benefits of a new market
 - Reduced cost of entry
 - Interoperability and network effect
 - Compete on innovation
 - Completing the value chain
 - Chips, systems, equipment vendors, service providers
- Example
 - 802.11 wireless LAN products

Standards Bodies

- Internet Engineering Task Force
 - Internet standards development
 - Request for Comments (RFCs): www.ietf.org
- International Telecommunications Union
 - International telecom standards
- IEEE 802 Committee
 - Local area and metropolitan area network standards
 - https://en.wikipedia.org/wiki/IEEE_802
- Industry Organizations
 - MPLS Forum, WiFi Alliance, World Wide Web Consortium