
Lecture 2-2
Routing

Routing in Packet Networks
Shortest Path Routing

Lecture 2-2
Routing

Routing in Packet Networks

Network Layer
• Network Layer: the most complex layer

• Requires the coordinated actions of multiple, geographically
distributed network elements (switches & routers)

• Must be able to deal with very large scales
• Billions of users (people & communicating devices)

• Biggest Challenges
• Addressing: where should information be directed to?
• Routing: what path should be used to get information there?

1

2

3

4

5

6

Node
(switch or router)

Routing in Packet Networks

• Three possible (loopfree) routes from 1 to 6:
• 1-3-6, 1-4-5-6, 1-2-5-6

• Which is “best”?
• Min delay? Min hop? Max bandwidth? Min cost? Max reliability?

Centralized vs Distributed Routing

• Centralized Routing
• All routes determined by a central node
• All state information sent to central node
• Problems adapting to frequent topology changes
• Does not scale

• Distributed Routing
• Routes determined by routers using distributed algorithm
• State information exchanged by routers
• Adapts to topology and other changes
• Better scalability

Specialized Routing
• Flooding

• Useful in starting up network
• Useful in propagating information to all nodes

Flooding (1)

Send a packet to all nodes in a network

• No routing tables available

• Need to broadcast packet to all nodes (e.g. to propagate link
state information)

Approach

• Send packet on all ports except one where it arrived

• Exponential growth in packet transmissions

1

2

3

4

5

6

Flooding is initiated from Node 1: Hop 1 transmissions

Flooding (2)

1

2

3

4

5

6

Flooding is initiated from Node 1: Hop 2 transmissions

Flooding (3)

1

2

3

4

5

6

Flooding is initiated from Node 1: Hop 3 transmissions

Flooding (4)

Limited Flooding
• Time-to-Live field in each packet limits number of hops to

certain diameter

• Each switch adds its ID before flooding; discards repeats

• Source puts sequence number in each packet; switches
records source address and sequence number and discards
repeats

Lecture 2-2
Routing

Routing in Packet Networks
Shortest Path Routing

Lecture 2-2
Routing

Shortest Path Routing

Shortest Paths & Routing
• Many possible paths connect any given source and to any

given destination

• Routing involves the selection of the path to be used to
accomplish a given transfer

• Typically it is possible to attach a cost or distance to a link
connecting two nodes

• Routing can then be posed as a shortest path problem

Routing Metrics
Means for measuring desirability of a path

• Path Length = sum of costs or distances

• Possible metrics
• Hop count: rough measure of resources used
• Reliability: link availability; BER
• Delay: sum of delays along path; complex & dynamic
• Bandwidth: “available capacity” in a path
• Load: Link & router utilization along path
• Cost: $$$

Shortest Path Approaches

Distance Vector Protocols

• Neighbors exchange list of distances to destinations

• Best next-hop determined for each destination

• Ford-Fulkerson (distributed) shortest path algorithm

Link State Protocols

• Link state information flooded to all routers

• Routers have complete topology information

• Shortest path (& hence next hop) calculated

• Dijkstra (centralized) shortest path algorithm

San Jose 392

San Jose 596

Distance Vector Do you know the way to San Jose?

Distance Vector

Local Signpost
• Direction
• Distance

Routing Table
For each destination list:
• Next Node
• Distance

Table Synthesis
• Neighbors exchange table entries

• Determine current best next hop

• Inform neighbors
• Periodically
• After changes

dest next dist

Shortest Path to SJ

i
j

San
Jose

Cij

Dj

Di If Di is the shortest distance to SJ from i
and if j is a neighbor on the shortest path, then
Di = Cij + Dj

Focus on how nodes find their shortest path to a
given destination node, i.e. SJ

i only has local info
from neighbors

Dj"

Cij”

i

San
Jose

jCij

Dj

Di j"

Cij'

j'
Dj'

Pick current
shortest path

But we don’t know the shortest paths

Why Distance Vector Works

San
Jose1 Hop

From SJ2 Hops
From SJ3 Hops

From SJ

Accurate info about SJ
ripples across network,

Shortest Path Converges

SJ sends
accurate info

Hop-1 nodes
calculate current
(next hop, dist), &
send to neighbors

Bellman-Ford Algorithm
• Consider computations for one destination d
• Initialization

• Each node table has 1 row for destination d
• Distance of node d to itself is zero: Dd=0
• Distance of other node j to d is infinite: Dj=∝, for j≠ d
• Next hop node nj = -1 to indicate not yet defined for j ≠ d

• Send Step
• Send new distance vector to immediate neighbors across local link

• Receive Step
• At node j, find the next hop that gives the minimum distance to d,

• Minj { Cij + Dj }
• Replace old (nj, Dj(d)) by new (nj*, Dj*(d)) if new next node or distance

• Go to send step

Bellman-Ford Algorithm
• Now consider parallel computations for all destinations d
• Initialization

• Each node has 1 row for each destination d
• Distance of node d to itself is zero: Dd(d)=0
• Distance of other node j to d is infinite: Dj(d)= ∝ , for j ≠ d
• Next node nj = -1 since not yet defined

• Send Step
• Send new distance vector to immediate neighbors across local link

• Receive Step
• For each destination d, find the next hop that gives the minimum

distance to d,
• Minj { Cij+ Dj(d) }
• Replace old (nj, Di(d)) by new (nj*, Dj*(d)) if new next node or distance found

• Go to send step

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞)

1

2

3

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5
San
Jose

Table entry
@ node 1
for dest SJ

Table entry
@ node 3
for dest SJ

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞)

1 (-1, ∞) (-1, ∞) (6,1) (-1, ∞) (6,2)

2

3

San
Jose

D6=0

D3=D6+1
n3=6

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5

D6=0D5=D6+2
n5=6

0

2

1

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞)

1 (-1, ∞) (-1, ∞) (6, 1) (-1, ∞) (6,2)

2 (3,3) (5,6) (6, 1) (3,3) (6,2)

3

San
Jose

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5
0

1

2

3

3

6

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞)

1 (-1, ∞) (-1, ∞) (6, 1) (-1, ∞) (6,2)

2 (3,3) (5,6) (6, 1) (3,3) (6,2)

3 (3,3) (4,4) (6, 1) (3,3) (6,2)

San
Jose

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5
0

1

26

3

3

4

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (3,3) (4,4) (6, 1) (3,3) (6,2)

1 (3,3) (4,4) (4, 5) (3,3) (6,2)

2

3

San
Jose

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5
0

1

2

3

3

4

Network disconnected; Loop created between nodes 3 and 4

5

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (3,3) (4,4) (6, 1) (3,3) (6,2)

1 (3,3) (4,4) (4, 5) (3,3) (6,2)

2 (3,7) (4,4) (4, 5) (5,5) (6,2)

3

San
Jose

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5
0

2

5

3

3

4

7

5

Node 4 could have chosen 2 as next node because of tie

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

Initial (3,3) (4,4) (6, 1) (3,3) (6,2)

1 (3,3) (4,4) (4, 5) (3,3) (6,2)

2 (3,7) (4,4) (4, 5) (5,5) (6,2)

3 (3,7) (4,6) (4, 7) (5,5) (6,2)

San
Jose

3
1

5

4
6

2

2

3

4

2

1

1

2

3

5 0

2

5

57

4

7

6
Node 2 could have chosen 5 as next node because of tie

3

5

4
6

2

2

3

4

2

1

1

2

3

5
1

Iteration Node 1 Node 2 Node 3 Node 4 Node 5

1 (3,3) (4,4) (4, 5) (3,3) (6,2)

2 (3,7) (4,4) (4, 5) (2,5) (6,2)

3 (3,7) (4,6) (4, 7) (5,5) (6,2)

4 (2,9) (4,6) (4, 7) (5,5) (6,2)

San
Jose

0

77

5

6

9

2

Node 1 could have chose 3 as next node because of tie

31 2 4
1 1 1

31 2 4
1 1

X

(a)

(b)

Update Node 1 Node 2 Node 3

Before break (2,3) (3,2) (4, 1)

After break (2,3) (3,2) (2,3)

1 (2,3) (3,4) (2,3)

2 (2,5) (3,4) (2,5)

3 (2,5) (3,6) (2,5)

4 (2,7) (3,6) (2,7)

5 (2,7) (3,8) (2,7)

… … … …

Counting to Infinity Problem

Nodes believe best
path is through each
other
(Destination is node 4)

Problem: Bad News Travels Slowly

Remedies

• Split Horizon
• Do not report route to a destination to the neighbor from which

route was learned

• Poisoned Reverse
• Report route to a destination to the neighbor from which route was

learned, but with infinite distance
• Breaks erroneous direct loops immediately
• Does not work on some indirect loops

31 2 4
1 1 1

31 2 4
1 1

X

(a)

(b)

Split Horizon with Poison Reverse

Nodes believe best
path is through
each other

Update Node 1 Node 2 Node 3

Before break (2, 3) (3, 2) (4, 1)
After break (2, 3) (3, 2) (-1, ∞) Node 2 advertizes its route to 4 to

node 3 as having distance infinity;
node 3 finds there is no route to 4

1 (2, 3) (-1, ∞) (-1, ∞) Node 1 advertizes its route to 4 to
node 2 as having distance infinity;
node 2 finds there is no route to 4

2 (-1, ∞) (-1, ∞) (-1, ∞) Node 1 finds there is no route to 4

Link-State Algorithm
• Basic idea: two step procedure

• Each source node gets a map of all nodes and link metrics (link state)
of the entire network

• Find the shortest path on the map from the source node to all
destination nodes

• Broadcast of link-state information
• Every node i in the network broadcasts to every other node in the

network:
• ID’s of its neighbors: Ni=set of neighbors of i
• Distances to its neighbors: {Cij | j ∈Ni}

• Flooding is a popular method of broadcasting packets

Dijkstra Algorithm: Finding shortest paths in order

s

w

w"

w'

Closest node to s is 1 hop away

w"

x

x'

2nd closest node to s is 1 hop
away from s or w”

x
z

z'

3rd closest node to s is 1 hop
away from s, w”, or xw'

Find shortest paths from
source s to all other
destinations

Dijkstra’s algorithm
• N: set of nodes for which shortest path already found

• Initialization: (Start with source node s)
• N = {s}, Ds = 0, “s is distance zero from itself”
• Dj=Csj for all j ≠ s, distances of directly-connected neighbors

• Step A: (Find next closest node i)
• Find i ∉ N such that
• Di = min Dj for j ∉ N
• Add i to N
• If N contains all the nodes, stop

• Step B: (update minimum costs)
• For each node j ∉ N
• Dj = min (Dj, Di+Cij)
• Go to Step A

Minimum distance from s to
j through node i in N

Execution of Dijkstra’s algorithm

Iteration N D2 D3 D4 D5 D6

Initial {1} 3 2 5 ∝ ∝
1 {1,3} 3 2 4 ∝ 3
2 {1,2,3} 3 2 4 7 3
3 {1,2,3,6} 3 2 4 5 3
4 {1,2,3,4,6} 3 2 4 5 3
5 {1,2,3,4,5,6} 3 2 4 5 3

1

2

4

5

6

1

1

2

3 2
3

5

2

4

3 1

2

4

5

6

1

1

2

3 2
3

5

2

4

331

2

4

5

6

1

1

2

3 2
3

5

2

4

3 1

2

4

5

6

1

1

2

3 2
3

5

2

4

331

2

4

5

6

1

1

2

3 2
3

5

2

4

33 1

2

4

5

6

1

1

2

3 2
3

5

2

4

331

2

4

5

6

1

1

2

3 2
3

5

2

4

33


















Shortest Paths in Dijkstra’s Algorithm
1

2

4

5

6

1

1

2

3 2
3

5

2

4

3 31

2

4

5

6

1

1

2

3 2
3

5

2

4

3

1

2

4

5

6

1

1

2

3 2
3

5

2

4

33 1

2

4

5

6

1

1

2

3 2
3

5

2

4

33

1

2

4

5

6

1

1

2

3 2
3

5

2

4

33 1

2

4

5

6

1

1

2

3 2
3

5

2

4

33

Routing table at node 1

Destination Next node Cost
2 2 3
3 3 2
4 3 4
5 3 5
6 3 3

Reaction to Failure
• If a link fails,

• Router sets link distance to infinity & floods the network
with an update packet

• All routers immediately update their link database &
recalculate their shortest paths

• Recovery very quick

• But watch out for old update messages
• Add time stamp or sequence # to each update message
• Check whether each received update message is new
• If new, add it to database and broadcast
• If older, send update message on arriving link

	 Lecture 2-2 �Routing
	 Lecture 2-2 �Routing
	Network Layer
	Routing in Packet Networks
	Centralized vs Distributed Routing
	Specialized Routing
	Flooding (1)
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Limited Flooding
	 Lecture 2-2 �Routing
	 Lecture 2-2 �Routing
	Shortest Paths & Routing
	Routing Metrics
	Shortest Path Approaches
	Distance Vector Do you know the way to San Jose?
	Distance Vector
	Shortest Path to SJ
	But we don’t know the shortest paths
	Why Distance Vector Works
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Counting to Infinity Problem
	Problem: Bad News Travels Slowly
	Split Horizon with Poison Reverse
	Link-State Algorithm
	Dijkstra Algorithm: Finding shortest paths in order
	Dijkstra’s algorithm
	Execution of Dijkstra’s algorithm
	Shortest Paths in Dijkstra’s Algorithm
	Routing table at node 1
	Reaction to Failure

