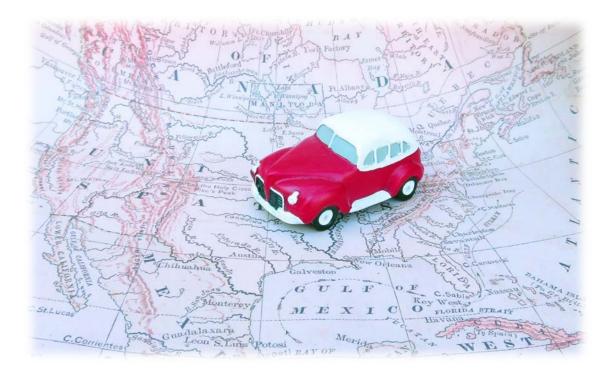
## Lecture 2-2 Routing

### Routing in Packet Networks Shortest Path Routing



# Lecture 2-2 Routing

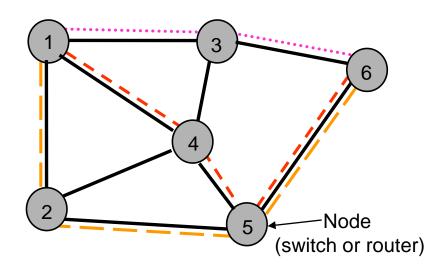
# Routing in Packet Networks



## **Network Layer**

- Network Layer: the most complex layer
  - Requires the coordinated actions of multiple, geographically distributed network elements (switches & routers)
  - Must be able to deal with very large scales
    - Billions of users (people & communicating devices)
  - Biggest Challenges
    - Addressing: where should information be directed to?
    - Routing: what path should be used to get information there?

## **Routing in Packet Networks**



- Three possible (loopfree) routes from 1 to 6:
  - 1-3-6, 1-4-5-6, 1-2-5-6
- Which is "best"?
  - Min delay? Min hop? Max bandwidth? Min cost? Max reliability?

## Centralized vs Distributed Routing

- Centralized Routing
  - All routes determined by a central node
  - All state information sent to central node
  - Problems adapting to frequent topology changes
  - Does not scale
- Distributed Routing
  - Routes determined by routers using distributed algorithm
  - State information exchanged by routers
  - Adapts to topology and other changes
  - Better scalability

## **Specialized Routing**

- Flooding
  - Useful in starting up network
  - Useful in propagating information to all nodes

# Flooding (1)

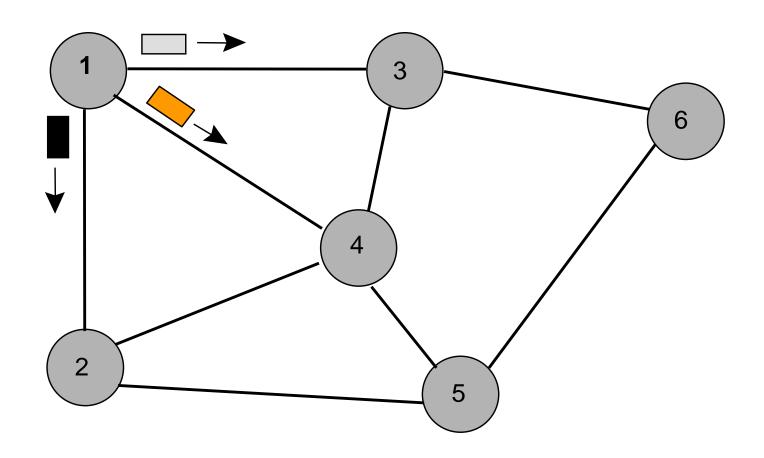
#### Send a packet to all nodes in a network

- No routing tables available
- Need to broadcast packet to all nodes (e.g. to propagate link state information)

#### **Approach**

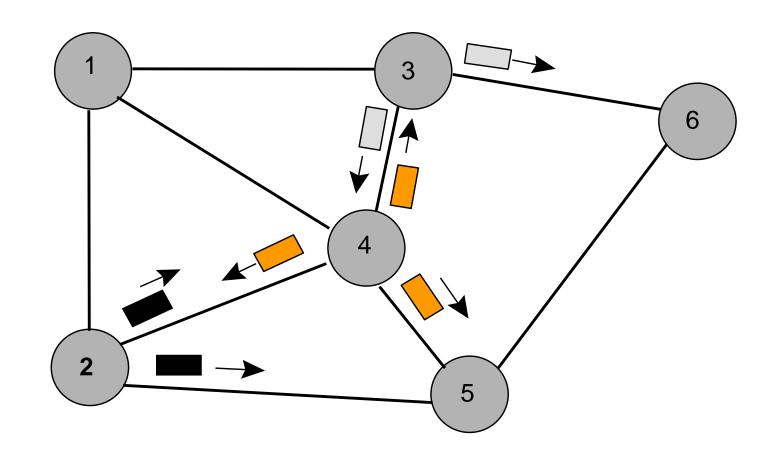
- Send packet on all ports except one where it arrived
- Exponential growth in packet transmissions

# Flooding (2)



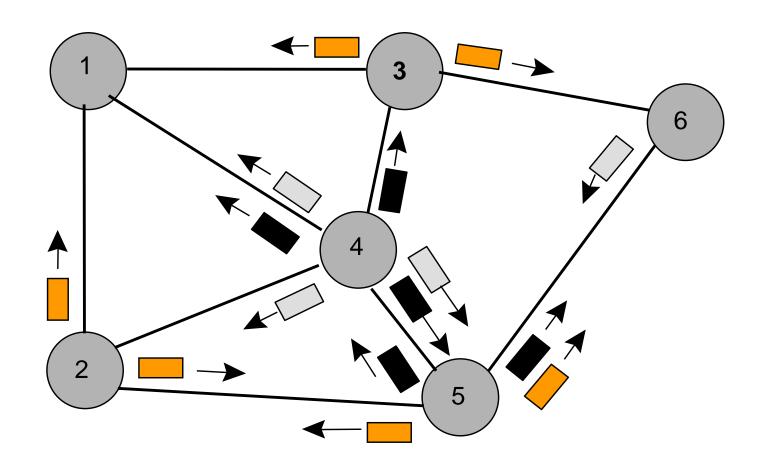
Flooding is initiated from Node 1: Hop 1 transmissions

# Flooding (3)



Flooding is initiated from Node 1: Hop 2 transmissions

# Flooding (4)



Flooding is initiated from Node 1: Hop 3 transmissions

## Limited Flooding

- Time-to-Live field in each packet limits number of hops to certain diameter
- Each switch adds its ID before flooding; discards repeats
- Source puts sequence number in each packet; switches records source address and sequence number and discards repeats

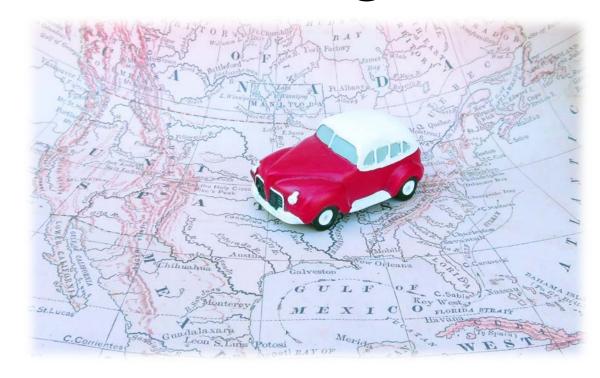
## Lecture 2-2 Routing

### Routing in Packet Networks Shortest Path Routing



# Lecture 2-2 Routing

# **Shortest Path Routing**



## **Shortest Paths & Routing**

- Many possible paths connect any given source and to any given destination
- Routing involves the selection of the path to be used to accomplish a given transfer
- Typically it is possible to attach a cost or distance to a link connecting two nodes
- Routing can then be posed as a shortest path problem

## **Routing Metrics**

Means for measuring desirability of a path

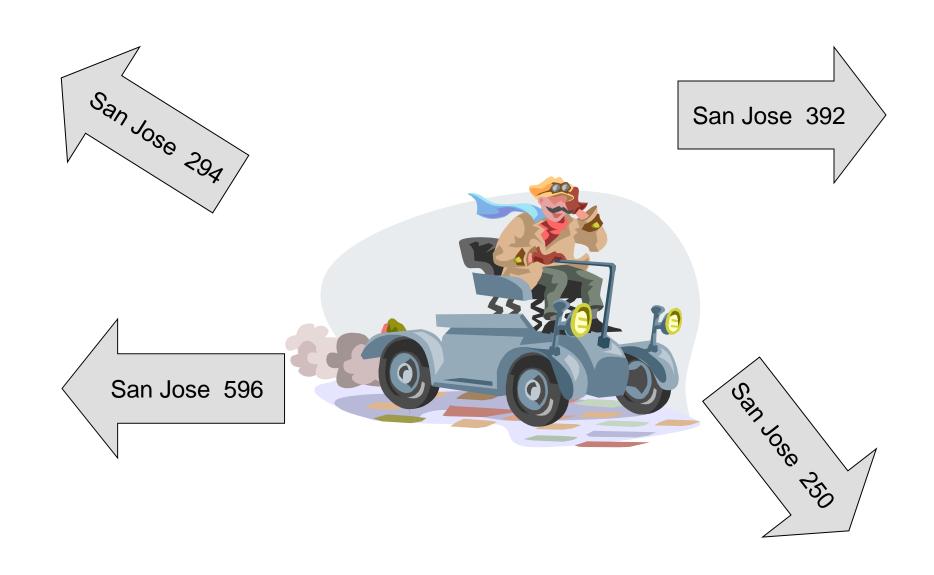
- Path Length = sum of costs or distances
- Possible metrics
  - Hop count: rough measure of resources used
  - Reliability: link availability; BER
  - Delay: sum of delays along path; complex & dynamic
  - Bandwidth: "available capacity" in a path
  - Load: Link & router utilization along path
  - Cost: \$\$\$

## **Shortest Path Approaches**

#### **Distance Vector Protocols**

- Neighbors exchange list of distances to destinations
- Best next-hop determined for each destination
- Ford-Fulkerson (distributed) shortest path algorithm
   Link State Protocols
- Link state information flooded to all routers
- Routers have complete topology information
- Shortest path (& hence next hop) calculated
- Dijkstra (centralized) shortest path algorithm

## Distance Vector Do you know the way to San Jose?



## **Distance Vector**

#### Local Signpost

- Direction
- Distance

#### Routing Table

#### For each destination list:

- Next Node
- Distance

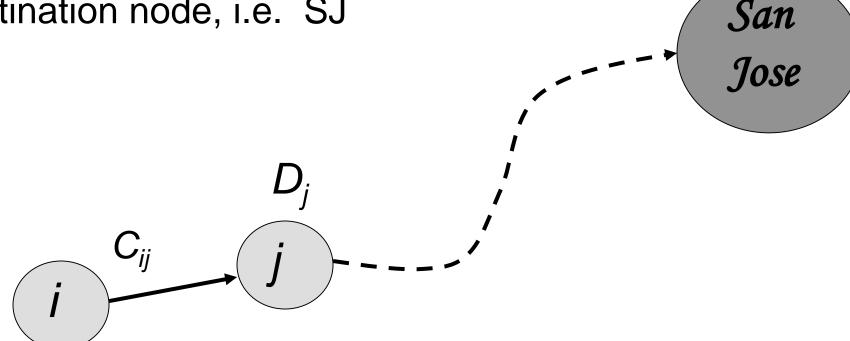
#### Table Synthesis

- Neighbors exchange table entries
- Determine current best next hop
- Inform neighbors
  - Periodically
  - After changes

| dest | next | dist |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |

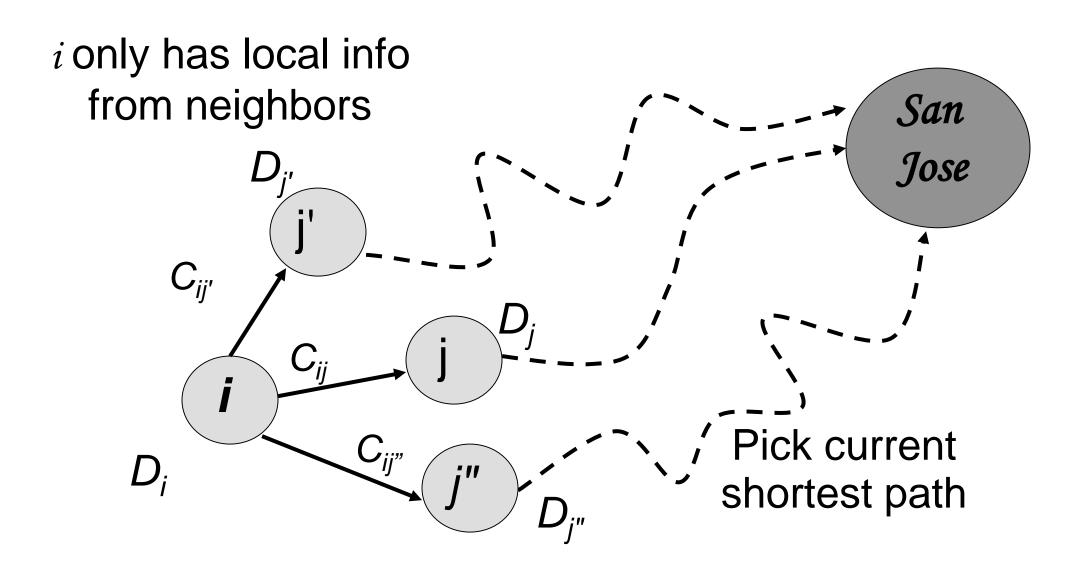
## **Shortest Path to SJ**

Focus on how nodes find their shortest path to a given destination node, i.e. SJ

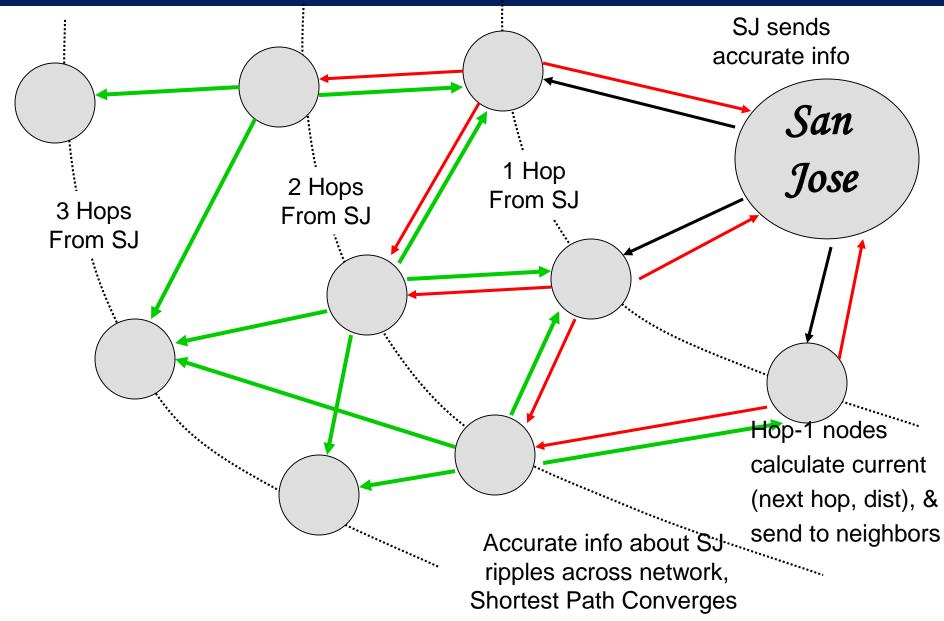


If  $D_i$  is the shortest distance to SJ from i and if j is a neighbor on the shortest path, then  $D_i = C_{ij} + D_i$ 

## But we don't know the shortest paths



## Why Distance Vector Works



## Bellman-Ford Algorithm

- Consider computations for one destination d
- Initialization
  - Each node table has 1 row for destination d
  - Distance of node d to itself is zero:  $D_d=0$
  - Distance of other node j to d is infinite:  $D_j = \infty$ , for  $j \neq d$
  - Next hop node  $n_i$  = -1 to indicate not yet defined for  $j \neq d$
- Send Step
  - Send new distance vector to immediate neighbors across local link
- Receive Step
  - At node j, find the next hop that gives the minimum distance to d,
    - $Min_j \{ C_{ij} + D_j \}$
    - Replace old  $(n_i, D_i(d))$  by new  $(n_i^*, D_i^*(d))$  if new next node or distance
  - Go to send step

## Bellman-Ford Algorithm

- Now consider parallel computations for all destinations d
- Initialization
  - Each node has 1 row for each destination d
  - Distance of node d to itself is zero:  $D_d(d)=0$
  - Distance of other node j to d is infinite:  $D_i(d) = \infty$ , for  $j \neq d$
  - Next node  $n_i = -1$  since not yet defined
- Send Step
  - Send new distance vector to immediate neighbors across local link
- Receive Step
  - For each destination d, find the next hop that gives the minimum distance to d,
    - Min; { C;;+ D;(d) }
    - Replace old  $(n_j, D_i(d))$  by new  $(n_j^*, D_j^*(d))$  if new next node or distance found
  - Go to send step

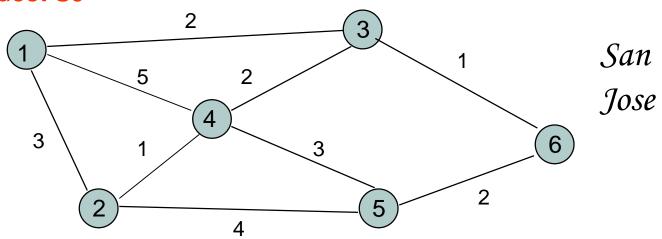
| Iteration | Node 1  | Node 2  | Node 3  | Node 4  | Node 5  |
|-----------|---------|---------|---------|---------|---------|
| Initial   | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) |
| 1         |         |         |         |         |         |
| 2         |         |         |         |         |         |
| 3         |         |         |         |         |         |

Table entry @ node 1

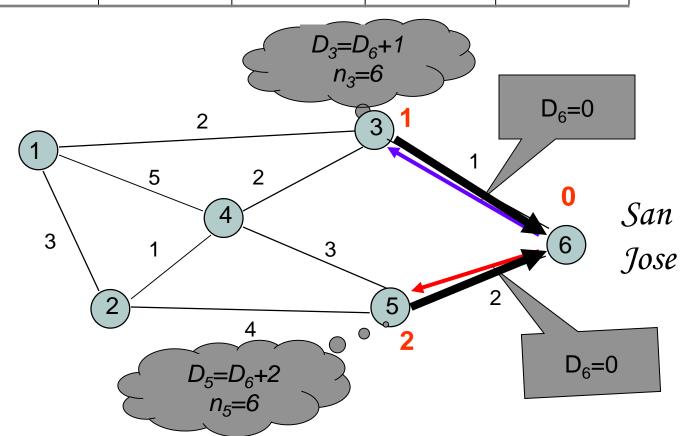
for dest SJ

Table entry

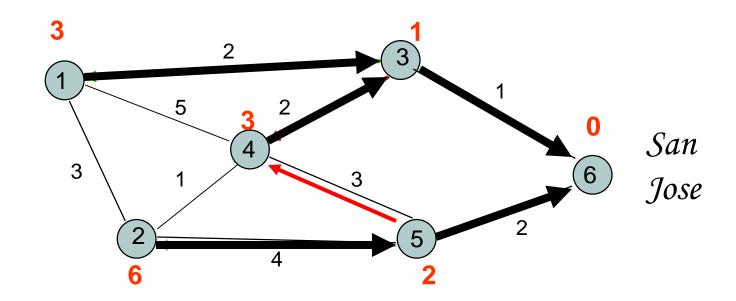
@ node 3
for dest SJ



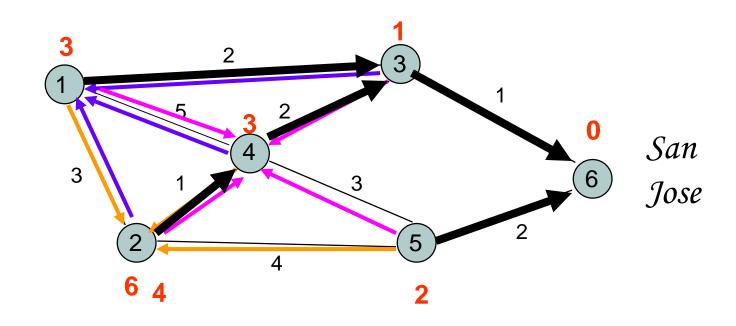
| Iteration | Node 1  | Node 2  | Node 3  | Node 4  | Node 5  |
|-----------|---------|---------|---------|---------|---------|
| Initial   | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) |
| 1         | (-1, ∞) | (-1, ∞) | (6,1)   | (-1, ∞) | (6,2)   |
| 2         |         |         |         |         |         |
| 3         |         |         |         |         |         |



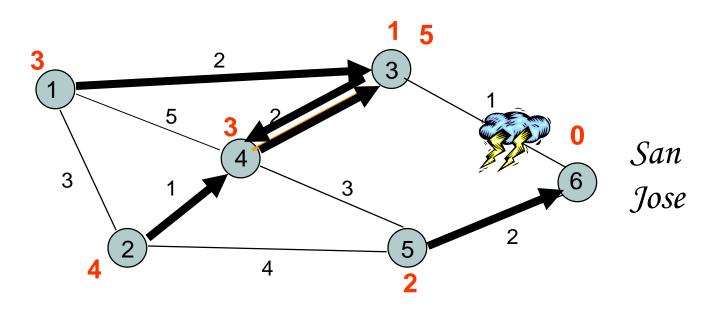
| Iteration | Node 1  | Node 2  | Node 3  | Node 4  | Node 5  |
|-----------|---------|---------|---------|---------|---------|
| Initial   | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) |
| 1         | (-1, ∞) | (-1, ∞) | (6, 1)  | (-1, ∞) | (6,2)   |
| 2         | ((3,3)) | (5,6)   | (6, 1)  | ((3,3)) | (6,2)   |
| 3         |         |         |         |         |         |



| Iteration | Node 1  | Node 2  | Node 3  | Node 4  | Node 5  |
|-----------|---------|---------|---------|---------|---------|
| Initial   | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) | (-1, ∞) |
| 1         | (-1, ∞) | (-1, ∞) | (6, 1)  | (-1, ∞) | (6,2)   |
| 2         | (3,3)   | (5,6)   | (6, 1)  | (3,3)   | (6,2)   |
| 3         | ((3,3)) | ((4,4)) | (6, 1)  | ((3,3)) | (6,2)   |

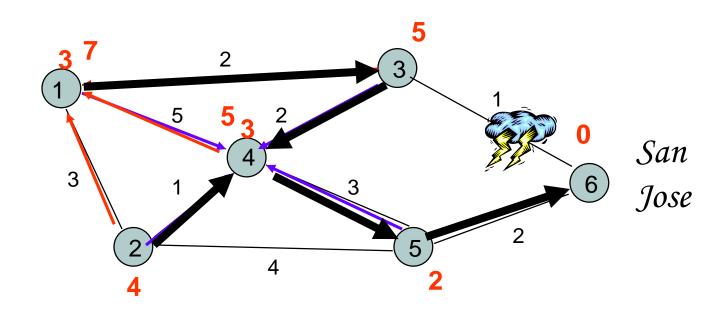


| Iteration | Node 1 | Node 2 | Node 3   | Node 4 | Node 5 |
|-----------|--------|--------|----------|--------|--------|
| Initial   | (3,3)  | (4,4)  | (6, 1)   | (3,3)  | (6,2)  |
| 1         | (3,3)  | (4,4)  | ((4, 5)) | (3,3)  | (6,2)  |
| 2         |        |        |          |        |        |
| 3         |        |        |          |        |        |



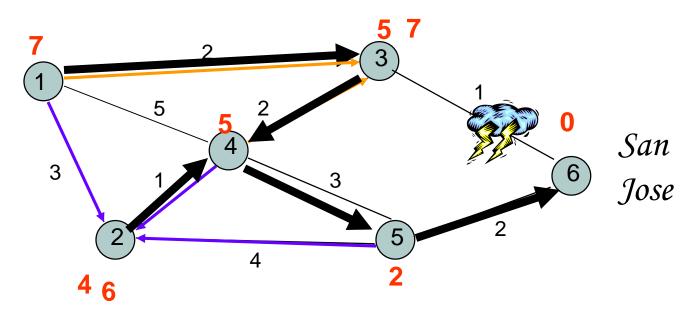
Network disconnected; Loop created between nodes 3 and 4

| Iteration | Node 1  | Node 2 | Node 3 | Node 4 | Node 5 |
|-----------|---------|--------|--------|--------|--------|
| Initial   | (3,3)   | (4,4)  | (6, 1) | (3,3)  | (6,2)  |
| 1         | (3,3)   | (4,4)  | (4, 5) | (3,3)  | (6,2)  |
| 2         | ((3,7)) | (4,4)  | (4, 5) | (5,5)  | (6,2)  |
| 3         |         |        |        |        |        |



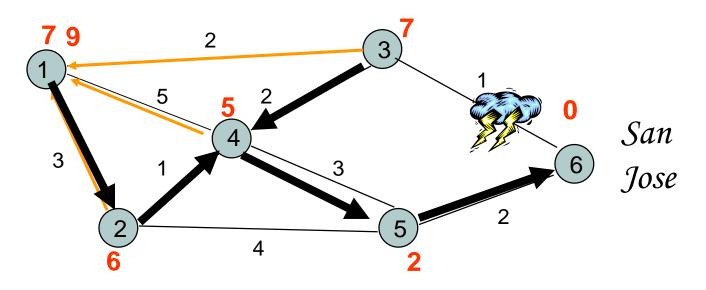
Node 4 could have chosen 2 as next node because of tie

| Iteration | Node 1 | Node 2 | Node 3 | Node 4 | Node 5 |
|-----------|--------|--------|--------|--------|--------|
| Initial   | (3,3)  | (4,4)  | (6, 1) | (3,3)  | (6,2)  |
| 1         | (3,3)  | (4,4)  | (4, 5) | (3,3)  | (6,2)  |
| 2         | (3,7)  | (4,4)  | (4, 5) | (5,5)  | (6,2)  |
| 3         | (3,7)  | (4,6)  | (4, 7) | (5,5)  | (6,2)  |



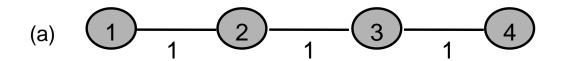
Node 2 could have chosen 5 as next node because of tie

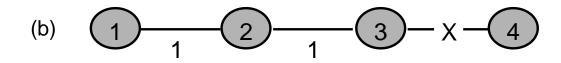
| Iteration | Node 1  | Node 2 | Node 3 | Node 4 | Node 5 |
|-----------|---------|--------|--------|--------|--------|
| 1         | (3,3)   | (4,4)  | (4, 5) | (3,3)  | (6,2)  |
| 2         | (3,7)   | (4,4)  | (4, 5) | (2,5)  | (6,2)  |
| 3         | (3,7)   | (4,6)  | (4, 7) | (5,5)  | (6,2)  |
| 4         | ((2,9)) | (4,6)  | (4, 7) | (5,5)  | (6,2)  |
|           |         |        |        |        |        |



Node 1 could have chose 3 as next node because of tie

## Counting to Infinity Problem





Nodes believe best path is through each other

(Destination is node 4)

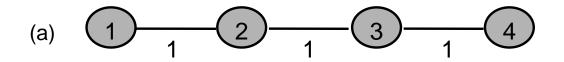
| Update       | Node 1 | Node 2 | Node 3 |
|--------------|--------|--------|--------|
| Before break | (2,3)  | (3,2)  | (4, 1) |
| After break  | (2,3)  | (3)2)  | (2)3)  |
| 1            | (2,3)  | (3,4)  | (2,3)  |
| 2            | (2,5)  | (3,4)  | (2,5)  |
| 3            | (2,5)  | (3,6)  | (2,5)  |
| 4            | (2,7)  | (3,6)  | (2,7)  |
| 5            | (2,7)  | (3,8)  | (2,7)  |
|              | •••    | •••    | •••    |

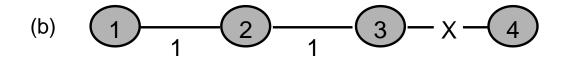
## Problem: Bad News Travels Slowly

#### Remedies

- Split Horizon
  - Do not report route to a destination to the neighbor from which route was learned
- Poisoned Reverse
  - Report route to a destination to the neighbor from which route was learned, but with infinite distance
  - Breaks erroneous direct loops immediately
  - Does not work on some indirect loops

## Split Horizon with Poison Reverse





Nodes believe best path is through each other

| Update       | Node 1  | Node 2  | Node 3  |                                                                                                             |
|--------------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------|
| Before break | (2, 3)  | (3, 2)  | (4, 1)  |                                                                                                             |
| After break  | (2, 3)  | (3, 2)  | (-1, ∞) | Node 2 advertizes its route to 4 to node 3 as having distance infinity; node 3 finds there is no route to 4 |
| 1            | (2, 3)  | (-1, ∞) | (-1, ∞) | Node 1 advertizes its route to 4 to node 2 as having distance infinity; node 2 finds there is no route to 4 |
| 2            | (-1, ∞) | (-1, ∞) | (-1, ∞) | Node 1 finds there is no route to 4                                                                         |

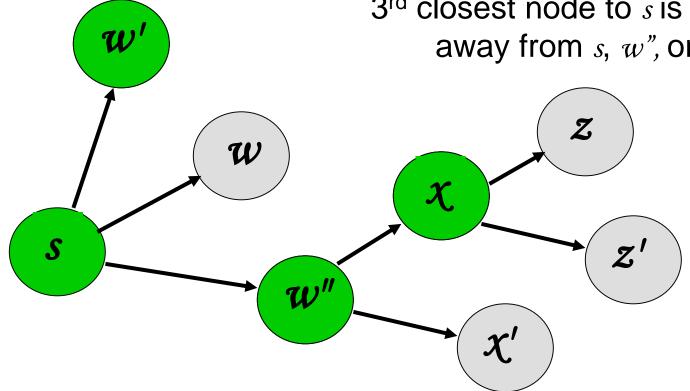
## Link-State Algorithm

- Basic idea: two step procedure
  - Each source node gets a map of all nodes and link metrics (link state)
     of the entire network
  - Find the shortest path on the map from the source node to all destination nodes
- Broadcast of link-state information
  - Every node in the network broadcasts to every other node in the network:
    - ID's of its neighbors:  $\mathcal{N}_i$ =set of neighbors of i
    - Distances to its neighbors:  $\{C_{ij} | j \in N_i\}$
  - Flooding is a popular method of broadcasting packets

## Dijkstra Algorithm: Finding shortest paths in order

Find shortest paths from source s to all other destinations

Closest node to s is 1 hop away  $2^{nd}$  closest node to s is 1 hop away from s or w."  $3^{rd}$  closest node to s is 1 hop away from s, w, or x



## Dijkstra's algorithm

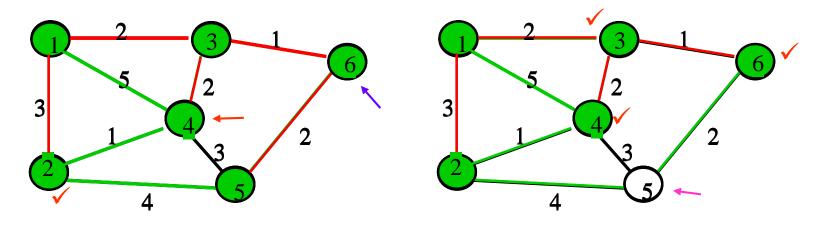
- N: set of nodes for which shortest path already found
- Initialization: (Start with source node s)
  - $N = \{s\}$ ,  $D_s = 0$ , "s is distance zero from itself"
  - $D_j = C_{sj}$  for all  $j \neq s$ , distances of directly-connected neighbors
- Step A: (Find next closest node i)
  - Find i ∉ N such that
  - $D_i = \min D_i$  for  $j \notin N$
  - Add ito N
  - If N contains all the nodes, stop
- Step B: (update minimum costs)
  - For each node  $j \notin N$
  - $D_j = \min (D_j, D_j + C_{ij})$  

    | ivilinity | j throw
  - Go to Step A

Minimum distance from s to

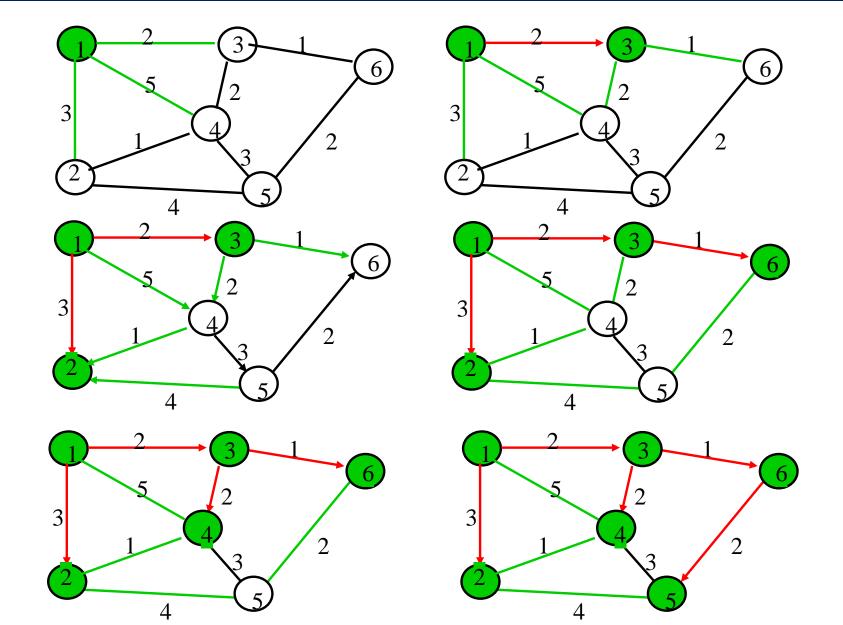
j through node i in N

## Execution of Dijkstra's algorithm



| Iteration | N             | $D_2$ | $D_3$ | $D_4$ | $D_5$     | $D_6$     |
|-----------|---------------|-------|-------|-------|-----------|-----------|
| Initial   | {1}           | 3     | 2 🗸   | 5     | $\infty$  | $\propto$ |
| 1         | {1,3}         | 3✓    | 2     | 4     | $\propto$ | 3         |
| 2         | {1,2,3}       | 3     | 2     | 4     | 7         | 3 🗸       |
| 3         | {1,2,3,6}     | 3     | 2     | 4 🗸   | 5         | 3         |
| 4         | {1,2,3,4,6}   | 3     | 2     | 4     | 5 🗸       | 3         |
| 5         | {1,2,3,4,5,6} | 3     | 2     | 4     | 5         | 3         |

## Shortest Paths in Dijkstra's Algorithm



# Routing table at node 1

| Destination | Next node | Cost |
|-------------|-----------|------|
| 2           | 2         | 3    |
| 3           | 3         | 2    |
| 4           | 3         | 4    |
| 5           | 3         | 5    |
| 6           | 3         | 3    |

## Reaction to Failure

- If a link fails,
  - Router sets link distance to infinity & floods the network with an update packet
  - All routers immediately update their link database & recalculate their shortest paths
  - Recovery very quick
- But watch out for old update messages
  - Add time stamp or sequence # to each update message
  - Check whether each received update message is new
  - If new, add it to database and broadcast
  - If older, send update message on arriving link