Lecture 6 Distributed Computing

Why distributed systems?

• Fact: Processor population is exploding. Technology has dramatically reduced the price of processors.

Geographic distribution of processes

Resource sharing as used in P2P networks

Computation speed up (as in a grid)

Fault tolerance

What is Distributed Systems?

What is a distributed system? (1)

- A network of processes/resources.
- The nodes are processes/resources, and the edges are communication channels.

What is a distributed system? (2)

- The logical distribution of functional capabilities
 - Multiple processes
 - Interprocess communication
 - Disjoint address space
 - Collective goal

What is a distributed system? (2) Collective Goal?

- Don't hold your breath:
 - Biocomputing
 - Using biologically derived molecules
 - Nanocomputing:
 - the manipulation of matter on an <u>atomic</u> and <u>molecular</u> scale
 - Quantum computing
 - use of <u>quantum-mechanical phenomena</u>, such as <u>superposition</u> and <u>entanglement</u>

• • • • •

- It all boils down to…
 - Divide-and-conquer
 - Throwing more hardware at the problem

What is a distributed system? (2) Divide and Conquer

Different Workers

- Different threads in the same core
- Different cores in the same CPU
- Different CPUs in a multi-processor system
- Different machines in a distributed system

Choices, Choices, Choices

- Commodity vs. "exotic" hardware
- Number of machines vs. processor vs. cores
- Memory vs. disk vs. network bandwidth
- Different programming models

A classification

Client-server model

Peer-to-peer model

Parallel vs. Distributed

- In both parallel and distributed systems, the events are partially ordered.
- In parallel systems, the primarily issue is speed-up
- In distributed systems the primary issues are fault-tolerance and availability of services

Important services

- Internet banking
- Web search
- Net meeting
- Distance education

- Internet auction
- Google earth
- Google sky
- And so on…

Examples

- Large networks are very commonplace these days. Think of the world wide web. Other examples are:
 - Ubiquitous Computing
 - Cloud computing
 - Grid computing, Grid computing networks
 - Ex. Computational grids (OSG, Teragrid, SETI@home)
 - Sensor networks
 - Network of mobile robots
 - And so on…

Sensor Network

Mobile robots

Cloud Computing

Image Source: www.vemurivenkatrao.com/nature/cloud/

Important issues

- Knowledge is local
- Clocks are not synchronized
- No shared address space
- Topology and routing
- Scalability
- Fault tolerance

Some common sub-problems

- Leader election
- Mutual exclusion
- Time synchronization
- Distributed snapshot
- Replica management