
Lecture 8

Representing Distributed Algorithms

Representing distributed algorithms

Well, you need to capture the notions of
atomicity, non-determinism, fairness etc.
These concepts are not built into languages
like JAVA, C++ etc!

Why do we need these?
Don’t we already know
a lot about programming?

Syntax & semantics

• Structure of a program
• In the opening line

program <name>;

• To define variables and constants
define <variable name>: <variable type>;
(ex 1) define n: message;
(ex 2) type message = record

a: integer
b: integer
c: boolean

end
define m: message

• To assign an initial value to a variable
Initially <variable> = <initial value>;
(ex) initially x = 0;

• A simple assignment
<variable> := <expression>
(ex) x := E

• A compound assignment
<variable 1>[,<variable n>] :=

<expression 1>[,<expression n>]
(ex) x, y := m.a, 2

It is equivalent to x := m.a and y := 2

Syntax & semantics

• Example (We will revisit this program later.)
program uncertain;
define x : integer;
initially x = 0;
do x < 4  x := x + 1
 x = 3  x := 0
od

Syntax & semantics

• Guarded Action: Conditional Statement

<guard G> → <action A>

is equivalent to

if G then A

• Not: ¬

Syntax & semantics

• Sequential actionsS0; S1; S2; . . . ; Sn

• Alternative constructs if fi
• Repetitive constructs do od

The specification is useful for representing
abstract algorithms, not executable codes.

Syntax & semantics

Alternative construct

if G1  S1

� G2  S2
…
� Gn  Sn
fi

When no guard is true, skip (do nothing). When
multiple guards are true, the choice of the action to be
executed is completely arbitrary.

Syntax & semantics

Repetitive construct

do G1  S1

� G2  S2
.
� Gn  Sn
od

Keep executing the actions until all guards are false
and the program terminates. When multiple guards
are true, the choice of the action is arbitrary.

Syntax & semantics

0 1

0

1

{program for process i}

do

∃j ∈ neighbor(i): c(j) = c(i) → c(i) := 1-c(i)

od

Will the above computation terminate?

There are four processes. The system has to
reach a configuration in which no two
neighboring processes have the same color.

Example: graph coloring

program uncertain;
define x : integer;
initially x = 0
do x < 4 x := x + 1
� x = 3  x := 0
od

Question. Will the program terminate?
• Our goal here is to understand fairness
• A Major issue in a distributed computation is

global termination

Consider another example

A distributed computation can
be viewed as a game between
the system and an adversary.
The adversary may come up
with feasible schedules to
challenge the system and
cause “bad things”.
A correct algorithm must be
able to prevent those bad
things from happening.

The adversary

Deterministic Computation vs. Nondeterministic Comp.

• Deterministic Computation
• The behaviors remains the same during every run of the program

• Nondeterministic Computation
• The behaviors of a program may be different during different runs

since the scheduler may choose other alternative actions.

define x: array [0..k-1] of boolean
initially all channels are empty
do ¬ empty (c0)  send ACK along c0
� ¬ empty (c1)  send ACK along c1
� …
� ¬ empty (ck-1)  send ACK along ck-1
od

For example, if all three requests are sent
simultaneously, client 2 or 3 may never get the token
with a deterministic scheduler! The outcome could have
been different if the server makes a non-deterministic
choice

Non-determinism is abundant in the real world. Examples?

Is it fair?

Non-determinism

• Non-determinism is abundant in the real
world.

• If there are multiple processes ready to execute
actions, who will execute the action first is
nondeterministic.

• If message propagation delays are arbitrary, the
order of message reception is non-deterministic

Determinism has a specific order and is a special case of non-
determinism.

Examples of non-determinism

Atomic = all or nothing

Atomic actions = indivisible actions

do red message → x:= 0 {red action}
� blue message → x:=7 {blue action}
od

Regardless of how nondeterminism is

handled, we would expect that the value of

x will be an arbitrary sequence of 0 and 7.

Right or wrong?

x

Atomicity (or granularity) (1)

do red message → x:= 0 {red action}
� blue message → x:=7 {blue action}
od

Let x be a 3-bit integer x2 x1 x0, so

x:=7 means x2:=1, x1:= 1, x2:=1, and

x:=0 means x2:=0, x1:= 0, x2:=0

If the assignment is not atomic, then many
Interleavings are possible, leading to
any possible values of x

x

So, the answer may depend on atomicity

Atomicity (2): [Q] Assignment?

Unless stated, we will assume that G
→ A is an “atomic operation.” Does it
make a difference if it is not so?

Transactions are atomic by definition
(in spite of process failures). Also,
critical section codes are atomic.

Can the other process B read the
state of the process A while the
process A is executing the if
statement?

y

x

if x ≠ y → y:= ¬ y fi

if x ≠ y → x:= ¬ x fi

Atomicity (4): [Q] Critical Section Code?

Defines the choices or restrictions
on the scheduling of actions. No
such restriction implies an unfair
scheduler. For fair schedulers, the
following types of fairness have
received attention:

• Unconditional fairness
• Weak fairness
• Strong fairness

Scheduler / demon /
adversary

Fairness

Program test
define x : integer
{initial value unknown}
do true  x : = 0
� x = 0  x : = 1
� x = 1  x : = 2
od

An unfair scheduler may never
schedule the second (or the
third actions). So, x may always
be equal to zero.

An unconditionally fair
scheduler will eventually give
every statement a chance to
execute without checking their
eligibility. (Example: process
scheduler in a
multiprogrammed OS.)

Fairness

Program test
define x : integer
{initial value unknown}
do true  x : = 0
� x = 0  x : = 1
� x = 1  x : = 2
od

• A scheduler is weakly fair,
when it eventually
executes every guarded
action whose guard
becomes true, and
remains true thereafter

• A weakly fair scheduler will
eventually execute the
second action, but may
never execute the third
action. Why?

Weak fairness

Program test

define x : integer

{initial value unknown}

do true  x : = 0

� x = 0  x : = 1

� x = 1  x : = 2

od

• A scheduler is strongly fair,
when it eventually executes
every guarded action whose
guard is true infinitely often.

• The third statement will be
executed under a strongly
fair scheduler. Why?

Strong fairness

• Distributed
Scheduler

• Since each individual
process has a local
scheduler, it leaves the
scheduling decision to
these individual
schedulers, without
attempting any kind of
global coordination.

• Central Scheduler or
Serial Scheduler

• It based on the
interleaving of actions. It
assumes that an invisible
demon finds out all the
guards that are enabled,
arbitrarily picks any one of
these guards, schedules
the corresponding actions,
and waits for the
completion of this action
before re-evaluating the
guards.

Central vs. Distributed Scheduler

• Goal: To make x[i+1 mod 2] = x[i]

{in all the processors i}
do
� x[i+1 mod 2] ≠ x[i]  x [i] := ¬ x[i]
od

Will this program terminate?
• using distributed scheduler
• using central scheduler

Example: Central vs. Distributed Scheduler

Simulation of a Distributed scheduling model

• Example
• Let y[k,i] denotes the local copy of the state x[k]

of process k as maintained by a neighboring
process i.

• To evaluate the guard by process i
• process i copies the state of each neighbor k, that is,

y[k,i] := x[k]
• Each process evaluates its guard(s) using the local copies

of its neighbors’ state and decides if an action will be
scheduled.

• The number of steps allowed to copy the neighbors’
states will depend on the grain of atomicity.

• Read-write atomicity in a fine-grain atomicity: only one
read at a time

• Coarse-grain atomicity model: all the read can be done in a
single step

Advantage & Disadvantage of Central scheduling
• Advantage

• Relatively easy of correctness proof

• Disadvantage
• Poor parallelism and poor scalability

 To avoid a serious problem, a correctness proof of the
designed scheduler (scheduling algorithm) is very important.

Example: Correctness proof (1)
• No System function correctly with distributed schedulers

unless it functions correctly under a central scheduler.
• In restricted cases, correct behavior with a central scheduler

guarantees correct behavior with a distributed scheduler.
• Theorem 4.1 If a distributed system works correctly with a central

scheduler and no enabled guard of a process is disabled by the
actions of their neighbors, the system is also correct with a
distributed scheduler.

Example: Correctness proof (2)
• Proof. Assume that i and j are neighboring processes. Consider the following four

events: (1) the evaluation of Gi as true; (2) the execution of Si; (3) the evaluation of
Gj as true; and (4) the execution of Sj. Distributed schedulers allow the following
schedules:

• Case 1: (1)(2)(3)(4)
• Case 2: (1)(3)(4)(2)
• Case 3: (1)(3)(2)(4)

Since the case 2 and the case 3 can be reduced to the case 1 and the case 1
corresponds to that of a central schedule. Thus, the theorem is proven.

	 Lecture 8 ��Representing Distributed Algorithms
	Representing distributed algorithms
	Syntax & semantics
	Syntax & semantics
	Syntax & semantics
	Syntax & semantics
	Syntax & semantics
	Syntax & semantics
	Syntax & semantics
	Example: graph coloring
	Consider another example
	The adversary
	Deterministic Computation vs. Nondeterministic Comp.
	Non-determinism
	Examples of non-determinism
	Atomicity (or granularity) (1)
	Atomicity (2): [Q] Assignment?
	Atomicity (4): [Q] Critical Section Code?
	Fairness
	Fairness
	Weak fairness
	Strong fairness
	Central vs. Distributed Scheduler
	Example: Central vs. Distributed Scheduler
	Simulation of a Distributed scheduling model
	Advantage & Disadvantage of Central scheduling
	Example: Correctness proof (1)
	Example: Correctness proof (2)

