
Lecture 8 

Representing Distributed Algorithms



Representing distributed algorithms

Well, you need to capture the notions of 
atomicity, non-determinism, fairness etc. 
These concepts are not built into languages 
like JAVA, C++ etc! 

Why do we need these? 
Don’t we already know      
a lot about programming? 



Syntax & semantics

• Structure of a program
• In the opening line

program <name>;

• To define variables and constants
define <variable name>: <variable type>;
(ex 1) define n: message;
(ex 2) type message = record

a: integer
b: integer
c: boolean

end
define m: message



• To assign an initial value to a variable
Initially <variable> = <initial value>;
(ex) initially x = 0;

• A simple assignment
<variable> := <expression>
(ex) x := E

• A compound assignment
<variable 1>[,<variable n>] := 

<expression 1>[,<expression n>]
(ex) x, y := m.a, 2

It is equivalent to x := m.a and y := 2

Syntax & semantics



• Example (We will revisit this program later.)
program uncertain;
define x : integer;
initially x = 0;
do x < 4  x := x + 1
 x = 3  x := 0
od

Syntax & semantics



• Guarded Action: Conditional Statement

<guard G> → <action A> 

is equivalent to 

if G then A

• Not: ¬

Syntax & semantics



• Sequential actionsS0; S1; S2; . . . ; Sn

• Alternative constructs if . . . . . . . . . . fi
• Repetitive constructs do . . . . . . . . . od

The specification is useful for representing 
abstract algorithms, not executable codes.

Syntax & semantics



Alternative construct

if G1  S1

� G2  S2
…
� Gn  Sn
fi

When no guard is true, skip (do nothing). When 
multiple guards are true, the choice of the action to be 
executed is completely arbitrary.

Syntax & semantics



Repetitive construct

do G1  S1

� G2  S2
.
� Gn  Sn
od

Keep executing the actions until all guards are false 
and the program terminates. When multiple guards 
are true, the choice of the action is arbitrary.

Syntax & semantics



0 1

0

1

{program for process i}

do

∃j ∈ neighbor(i): c(j) = c(i) → c(i) := 1-c(i)

od

Will the above computation terminate?

There are four processes. The system has to 
reach a configuration in which no two 
neighboring processes have the same color.

Example: graph coloring



program uncertain;
define x : integer;
initially x = 0
do x < 4 x := x + 1
� x = 3  x := 0
od

Question. Will the program terminate?
• Our goal here is to understand fairness
• A Major issue in a distributed computation is 

global termination

Consider another example



A distributed computation can 
be viewed as a game between 
the system and an adversary. 
The adversary may come up 
with feasible schedules to 
challenge the system and 
cause “bad things”. 
A correct algorithm must be 
able to prevent those bad 
things from happening. 

The adversary



Deterministic Computation vs. Nondeterministic Comp.

• Deterministic Computation
• The behaviors remains the same during every run of the program

• Nondeterministic Computation
• The behaviors of a program may be different during different runs 

since the scheduler may choose other alternative actions.



define x: array [0..k-1] of boolean
initially all channels are empty
do ¬ empty (c0)  send ACK along c0
� ¬ empty (c1)  send ACK along c1
� …
� ¬ empty (ck-1)  send ACK along ck-1
od

For example, if all three requests are sent 
simultaneously, client 2 or 3 may never get the token 
with a deterministic scheduler! The outcome could have 
been different if the server makes a non-deterministic 
choice

Non-determinism is abundant in the real world. Examples?

Is it fair?

Non-determinism



• Non-determinism is abundant in the real 
world.

• If there are multiple processes ready to execute 
actions, who will execute the action first is 
nondeterministic.

• If message propagation delays are arbitrary, the 
order of message reception is non-deterministic

Determinism has a specific order and is a special case of non-
determinism.

Examples of non-determinism



Atomic = all or nothing

Atomic actions = indivisible actions

do red message → x:= 0 {red action}
� blue message → x:=7 {blue action}
od

Regardless of how nondeterminism is

handled, we would expect that  the value of 

x will be an arbitrary sequence of 0 and 7.

Right or wrong?

x

Atomicity (or granularity) (1)



do red message → x:= 0 {red action}
� blue message → x:=7 {blue action}
od

Let x be a 3-bit integer x2 x1 x0, so

x:=7 means x2:=1, x1:= 1, x2:=1, and

x:=0 means x2:=0, x1:= 0, x2:=0

If the assignment is not atomic, then many
Interleavings are possible, leading to
any possible values of x

x

So, the answer may depend on atomicity

Atomicity (2): [Q] Assignment?



Unless stated, we will assume that G 
→ A is an “atomic operation.” Does it 
make a difference if it is not so?

Transactions are atomic by definition 
(in spite of process failures). Also, 
critical section codes are atomic.

Can the other process B read the 
state of the process A while the 
process A is executing the if 
statement?

y

x

if x ≠ y → y:= ¬ y fi

if x ≠ y → x:= ¬ x fi

Atomicity (4):  [Q] Critical Section Code?



Defines the choices or restrictions 
on the scheduling of actions. No 
such restriction implies an unfair 
scheduler. For fair schedulers, the 
following types of fairness have 
received attention:

• Unconditional fairness
• Weak fairness
• Strong fairness

Scheduler / demon /
adversary

Fairness



Program test
define x : integer
{initial value unknown}
do true  x : = 0
� x = 0  x : = 1
� x = 1  x : = 2
od

An unfair scheduler may never
schedule the second (or the 
third actions). So, x may always 
be equal to zero.

An unconditionally fair 
scheduler will eventually give 
every statement a chance to  
execute without checking their 
eligibility. (Example: process 
scheduler in a 
multiprogrammed OS.)

Fairness



Program test
define x : integer
{initial value unknown}
do true  x : = 0
� x = 0  x : = 1
� x = 1  x : = 2
od

• A scheduler is weakly fair,
when it eventually 
executes every guarded 
action whose guard 
becomes true, and 
remains true thereafter

• A weakly fair scheduler will 
eventually execute the 
second action, but may 
never execute the third 
action. Why?

Weak fairness



Program test

define x : integer

{initial value unknown}

do true  x : = 0

� x = 0  x : = 1

� x = 1  x : = 2

od

• A scheduler is strongly fair, 
when it eventually executes 
every guarded action whose 
guard is true infinitely often.

• The third statement will be 
executed under a strongly 
fair scheduler. Why?

Strong fairness



• Distributed 
Scheduler

• Since each individual 
process has a local 
scheduler, it leaves the 
scheduling decision to 
these individual 
schedulers, without 
attempting any kind of 
global coordination.

• Central Scheduler or 
Serial Scheduler

• It based on the 
interleaving of actions. It 
assumes that an invisible 
demon finds out all the 
guards that are enabled, 
arbitrarily picks any one of 
these guards, schedules
the corresponding actions, 
and waits for the 
completion of this action 
before re-evaluating the 
guards.

Central vs. Distributed Scheduler



• Goal: To make x[i+1 mod 2] = x[i]

{in all the processors i}
do
� x[i+1 mod 2] ≠ x[i]  x [i] := ¬ x[i]
od

Will this program terminate?
• using distributed scheduler
• using central scheduler 

Example: Central vs. Distributed Scheduler 



Simulation of a Distributed scheduling model

• Example
• Let y[k,i] denotes the local copy of the state x[k]

of process k as maintained by a neighboring 
process i.

• To evaluate the guard by process i
• process i copies the state of each neighbor k, that is, 

y[k,i] := x[k]
• Each process evaluates its guard(s) using the local copies 

of its neighbors’ state and decides if an action will be 
scheduled.

• The number of steps allowed to copy the neighbors’ 
states will depend on the grain of atomicity.

• Read-write atomicity in a fine-grain atomicity: only one 
read at a time

• Coarse-grain atomicity model: all the read can be done in a 
single step



Advantage & Disadvantage of Central scheduling
• Advantage

• Relatively easy of correctness proof

• Disadvantage
• Poor parallelism and poor scalability

 To avoid a serious problem, a correctness proof of the 
designed scheduler (scheduling algorithm) is very important.



Example: Correctness proof (1)
• No System function correctly with distributed schedulers 

unless it functions correctly under a central scheduler.
• In restricted cases, correct behavior with a central scheduler 

guarantees correct behavior with a distributed scheduler.
• Theorem 4.1 If a distributed system works correctly with a central 

scheduler and no enabled guard of a process is disabled by the 
actions of their neighbors, the system is also correct with a 
distributed scheduler.



Example: Correctness proof (2)
• Proof. Assume that i and j are neighboring processes. Consider the following four 

events: (1) the evaluation of Gi as true; (2) the execution of Si; (3) the evaluation of 
Gj as true; and (4) the execution of Sj. Distributed schedulers allow the following 
schedules:

• Case 1: (1)(2)(3)(4)
• Case 2: (1)(3)(4)(2)
• Case 3: (1)(3)(2)(4)

Since the case 2 and the case 3 can be reduced to the case 1 and the case 1 
corresponds to that of a central schedule. Thus, the theorem is proven.
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