
Cloud Computing
Hwajung Lee

Key Reference: 

Prof. Jong-Moon Chung’s Lecture Notes at Yonsei University



Cloud Computing

• Cloud Introduction

• Cloud Service Model

• Big Data

• Hadoop

• MapReduce

• HDFS (Hadoop Distributed File System)



MapReduce



MapReduce

Hadoop

• Hadoop is a Reliable Shared Storage and Analysis System

• Hadoop = HDFS + MapReduce + α

- HDFS provides Data Storage

- HDFS: Hadoop Distributed FileSystem

- MapReduce provides Data Analysis

- MapReduce = Map Function + Reduce Function



MapReduce

Scaling Out

• Scaling out is done by the DFS (Distributed FileSystem),

where the data is divided and stored in distributed computers

& servers

• Hadoop uses HDFS to move the MapReduce computation to

several distributed computing machines that will process a

part of the divided data assigned



MapReduce

Jobs

• MapReduce job is a unit of work that needs to be executed

• Job types: Data input, MapReduce program, Configuration

Information, etc.

• Job is executed by dividing it into one of two types of tasks
• Map Task

• Reduce Task



MapReduce

Node types for Job execution

• Job execution is controlled by 2 types of nodes
• Jobtracker

• Tasktracker

• Jobtracker coordinates all jobs

• Jobtracker schedules all tasks and assigns the tasks to tasktrackers



MapReduce

• Tasktracker will execute its assigned task

• Tasktracker will send a progress reports to the Jobtracker

• Jobtracker will keep a record of the progress of all jobs executed



MapReduce

Data flow

• Hadoop divides the input into input splits (or splits) suitable

for the MapReduce job

• Split has a fixed-size

• Split size is commonly matched to the size of a HDFS block

(64 MB) for maximum processing efficiency



MapReduce

Data flow

• Map Task is created for each split

• Map Task executes the map function for all records within the split

• Hadoop commonly executes the Map Task on the node where the

input data resides



MapReduce

Data flow

• Data-Local Map Task

• Data locality optimization

does not need to use the cluster network

• Data-local flow process shows why the

Optimal Split Size = 64 MB HDFS Block Size



MapReduce

• Rack-Local Map Task

• A node hosting the 

HDFS block replicas for 

a map task’s input split
could be running other map tasks

• Job Scheduler will look for a free map slot on

a node in the same rack as one of the blocks

Map Task 

HDFS Block

Node

Rack

Data Center

Data flow



MapReduce

• Off-Rack Map Task

• Needed when the 

Job Scheduler
cannot perform data-local or rack-local map tasks

• Uses inter-rack network transfer

Data flow



MapReduce

Map
• Map task will write its output to the local disk

• Map task output is not the final output, it is only the 

intermediate output

Reduce
• Map task output is processed by Reduce Tasks to produce the final

output

• Reduce Task output is stored in HDFS

• For a completed job, the Map Task output can be discarded



MapReduce

Single Reduce Task

• Node includes Split, Map, Sort, and Output unit

• Light blue arrows show data transfers in a node

• Black arrows show data transfers between nodes



MapReduce

Single Reduce Task

• Number of reduce tasks is specified

independently, and is not based on

the size of the input



MapReduce

Combiner Function

• User specified function to run on the Map output

 Forms the input to the Reduce function

• Specifically designed to minimize the data transferred between

Map Tasks and Reduce Tasks

• Solves the problem of limited network speed on the cluster

and helps to reduce the time in completing MapReduce jobs



MapReduce

Multiple Reducer

• Map tasks partition their output, each creating one partition for

each reduce task

• Each partition may use many keys and key associated

values

• All records for a key are kept in a single partition



MapReduce

Multiple Reducers

• Shuffle process is used in the data flow

between the Map tasks and Reduce tasks

Shuffle



MapReduce

Zero Reducer

• Zero reducer uses

no shuffle process

• Applied when all of the 

processing can be carried 

out in parallel Map tasks



HDFS



HDFS

Hadoop

• Hadoop is a Reliable Shared Storage and Analysis System

• Hadoop = HDFS + MapReduce + α

- HDFS provides Data Storage

- HDFS: Hadoop Distributed FileSystem

- MapReduce provides Data Analysis

- MapReduce = Map Function + Reduce

Function



HDFS

HDFS: Hadoop Distributed FileSystem

• DFS (Distributed FileSystem) is designed for storage 

management of a network of computers

• HDFS is optimized to store large terabyte size files with

streaming data access patterns



HDFS

HDFS: Hadoop Distributed FileSystem

• HDFS was designed to be optimal in performance for a WORM

(Write Once, Read Many times) pattern

• HDFS is designed to run on clusters of general computers

& servers from multiple vendors



HDFS

HDFS Characteristics

• HDFS is optimized for large scale and high throughput data

processing

• HDFS does not perform well in supporting applications that

require minimum delay (e.g., tens of milliseconds range)



HDFS

Blocks

• Files in HDFS are divided into block size chunks

 64 Megabyte default block size

• Block is the minimum size of data that it can read or write

• Blocks simplifies the storage and replication process

 Provides fault tolerance & processing speed enhancement

for larger files



HDFS

HDFS

• HDFS clusters use 2 types of nodes

• Namenode (master node)

• Datanode (worker node)



HDFS

Namenode

• Manages the filesystem namespace

• Namenode keeps track of the datanodes that have blocks of

a distributed file assigned

• Maintains the filesystem tree and the metadata for all the files

and directories in the tree

• Stores on the local disk using 2 file forms
• Namespace Image

• Edit Log



HDFS

Namenode

• Namenode holds the filesystem metadata in its memory

• Namenode’s memory size determines the limit to the 

number of files in a filesystem

• But then, what is Metadata?



HDFS

Metadata

• Traditional concept of the library card catalogs

• Categorizes and describes the contents and context of the data

files

• Maximizes the usefulness of the original data file by making it

easy to find and use



HDFS

Metadata Types

• Structural Metadata
• Focuses on the data structure’s design and specification

• Descriptive Metadata

• Focuses on the individual instances of application data or

the data content



HDFS

•Datanodes

• Workhorse of the filesystem

• Store and retrieve blocks when requested by the client or

the namenode

• Periodically reports back to the namenode with lists of 

blocks that were stored



HDFS

Client Access

• Client can access the filesystem (on behalf of the user) by

communicating with the namenode and datanodes

• Client can use a filesystem interface (similar to a POSIX 

(Portable Operating System Interface)) so the user code does

not need to know about the namenode and datanodes to

function properly



HDFS

Namenode Failure

• Namenode keeps track of the datanodes that have blocks of a

distributed file assigned

 Without the namenode, the filesystem cannot be used

• If the computer running the namenode malfunctions then

reconstruction of the files (from the blocks on the datanodes)

would not be possible

 Files on the filesystem would be lost



HDFS

Namenode Failure Resilience

• Namenode failure prevention schemes

1. Namenode File Backup

2. Secondary Namenode



HDFS

Namenode File Backup

• Back up the namenode files that form the persistent state of

the filesystem’s metadata

• Configure the namenode to write its persistent state to

multiple filesystems

 Synchronous and atomic backup

• Common backup configuration

 Copy to Local Disk and Remote FileSystem



HDFS

Secondary Namenode

• Secondary namenode does not act the same way as the 

namenode

• Secondary namenode periodically merges the namespace image

with the edit log to prevent the edit log from becoming too large

• Secondary namenode usually runs on a separate computer to

perform the merge process because this requires significant

processing capability and memory



HDFS

Hadoop 2.x Release Series HDFS Reliability Enhancements

• HDFS Federation

• HDFS HA (High-Availability)



HDFS

HDFS Federation

• Allows a cluster to scale by adding namenodes

• Each namenode manages a
namespace volume and a block pool

• Namespace volume is made up of the metadata for the namespace
• Block pool contains all the blocks for the files in the namespace



HDFS

•HDFS Federation

• Namespace volumes are all independent

• Namenodes do not communicate with each other

• Failure of a namenode is also independent to other namenodes
• A namenode failure does not influence the availability of

another namenode’s namespace



HDFS

HDFS High-Availability

• Pair of namenodes (Primary & Standby) are set to be in Active-

Standby configuration

• Secondary namenode stores the latest edit log entries and an

up-to-date block mapping

• When the primary namenode fails, the standby namenode

takes over serving client requests



HDFS

HDFS High-Availability

• Although the active-standby namenode can takeover operation

quickly (e.g., few tens of seconds), to avoid unnecessary

namenode switching, standby namenode activation will be

executed after a sufficient observation period
(e.g., approximately a minute or a few minutes)



• V. Mayer-Schönberger, and K. Cukier, Big data: A revolution that will transform how we live,

work, and think. Houghton Mifflin Harcourt, 2013.
• T. White, Hadoop: The Definitive Guide. O'Reilly Media, 2012.
• J. Venner, Pro Hadoop. Apress, 2009.

• S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz, “Big Data, Analytics

and the Path From Insights to Value,” MIT Sloan Management Review, vol. 52, no. 2,

Winter 2011.
• B. Randal, R. H. Katz, and E. D. Lazowska, "Big-data Computing: Creating 

revolutionary breakthroughs in commerce, science and society," Computing
Community Consortium, pp. 1-15, Dec. 2008.

• G. Linden, B. Smith, and J. York. "Amazon.com Recommendations: Item-to-Item
Collaborative Filtering," IEEE Internet Computing, vol. 7, no. 1, pp. 76-80, Jan/Feb. 2003.

References



• J. R. GalbRaith, "Organizational Design Challenges Resulting From Big Data,"
Journal of Organization Design, vol. 3, no. 1, pp. 2-13, Apr. 2014.

• S. Sagiroglu and D. Sinanc, “Big data: A review,” Proc. IEEE International Conference on

Collaboration Technologies and Systems, pp. 42-47, May 2013.
• M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks and 

Applications, vol. 19, no. 2, pp. 171-209, Jan. 2014.
• X. Wu, X. Zhu, G. Q. Wu, and W. Ding, ‘‘Data Mining with Big Data,’’ IEEE Transactions on

Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107, Jan. 2014.
• Z. Zheng, J. Zhu, and M. R. Lyu, ‘‘Service-Generated Big Data and Big Data-as-a- Service:

An Overview,’’ Proc. IEEE International Congress on Big Data, pp. 403– 410, Jun/Jul. 2013.

References



• I. Palit and C.K. Reddy, “Scalable and Parallel Boosting with MapReduce,” IEEE Transactions

on Knowledge and Data Engineering, vol. 24, no. 10, pp. 1904-1916, 2012.
• M.-Y Choi, E.-A. Cho, D.-H. Park, C.-J Moon, and D.-K. Baik, “ADatabase Synchronization

Algorithm for Mobile Devices,” IEEE Transactions on Consumer Electronics, vol. 56, no. 2, 
pp. 392-398, May 2010.

• IBM, What is big data?, http://www.ibm.com/software/data/bigdata/what-is-big-data.html
[Accessed June 1, 2015]

• Hadoop Apache, http://hadoop.apache.org

• Wikipedia, http://www.wikipedia.org

Image sources
• Walmart Logo, By Walmart [Public domain], via Wikimedia Commons

• Amazon Logo, By Balajimuthazhagan (Own work) [CC BY-SA 3.0

(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

References

http://www.ibm.com/software/data/bigdata/what-is-big-data.html
http://www.ibm.com/software/data/bigdata/what-is-big-data.html
http://www.ibm.com/software/data/bigdata/what-is-big-data.html
http://hadoop.apache.org/
http://www.wikipedia.org/
http://creativecommons.org/licenses/by-sa/3.0)

