TIME COMPLEXITY OF ALGORITHMS

Vassos Hadzilacos
University of Toronto

1 Measuring time complexity
The worst-case time complexity of an algorithm is expressed as a function
T: N—- N

where T'(n) is the maximum number of “steps” in any execution of the algorithm on inputs of “size” n.
Intuitively, the amount of time an algorithm takes depends on how large is the input on which the algorithm
must operate: Sorting large lists takes longer than sorting short lists; multiplying huge matrices takes longer
than multiplying small ones. The dependence of the time needed to the size of the input is not necessarily
linear: sorting twice the number of elements takes quite a bit more than just twice as much time; searching
(using binary search) through a sorted list twice as long, takes a lot less than twice as much time. The
time complexity function expresses that dependence. Note that an algorithm might take different amounts
of time on inputs of the same size. We have defined the worst-case time complexity, which means that we
count the maximum number of steps that any input of a particular size could take. For example, if the
time complexity of an algorithm is 3 - n2, it means that on inputs of size n the algorithm requires up to
3 - n? steps. To make this precise, we must clarify what we mean by “input size” and “step”.

Input size. We can define the size of an input in a general way as the number of bits required to store the
input. This definition is general but it is sometimes inconvenient because it is too low-level. More usefully
we define the size of the input in a way that is problem-dependent. For example, when we are dealing
with sorting algorithms, it may be more convenient to use the number of elements we want to sort as the
measure of the input size. This measure ignores the size of the individual elements that are to be sorted.
Sometimes there may be several reasonable choices for the size of input. For instance, if we are dealing
with algorithms for multiplying square matrices, we may express the input size as the dimension of the
matrix (i.e., the number of columns or rows), or we may express the input size as the number of entries in
the matrix. In this case the two measures are related to each other (the latter is the square of the former).
One conclusion from this discussion is that in order to properly interpret the function that describes the
time complexity of an algorithm we must be clear about how exactly we measure the size of inputs.

Step. A step of the algorithm can be defined precisely if we fix a particular machine on which the algorithm
is to be run. For instance, if we are using a machine with a Pentium processor, we might define a step
to be one Pentium instruction. This is not the only reasonable choice: different instructions take different
amounts of time, so a more refined definition might be that a step is one cycle of the processor’s clock. In
general, however, we want to analyse the time complexity of an algorithm without restricting ourselves to
some particular machine. We can do this by adopting a more flexible notion of what constitutes a step.
In general, we will consider a step to be anything that we can reasonably expect a computer to do in a
fixed amount of time. Typical examples are performing an arithmetic operation, comparing two numbers,
or assigning a value to a variable.



2 Asymptotic bound notation

Since, in the interest of generality, we measure time in somewhat abstractly defined “steps”, there is little
point in fretting over the precise number of steps. For instance, if by some definition of steps the time
complexity of the algorithm is 5n2, by a different definition of steps it might be 7n?, and by yet another
definition of steps it might be n?/2. Thus, we would like to be able to ignore constant factors when
expressing the time complexity of algorithms. If we are willing to be flexible about constant factors, we
should also be willing to be flexible about “low-order” terms. So, for instance if the time complexity is
5n2 + 17logn, and we are willing to drop the constant factor 5 of n2, we should also be willing to drop the
term 17logn (since the 4n? steps we are ignoring are many more than 17logn, for large enough values of

To express, in a mathematically meaningful manner, approximations that are oblivious to constant
factors and low-order terms, computer scientists have developed some special notation about functions,
known as the “big-oh”, the “big-omega” and “big-theta” notation. If & € N, NZ* denotes be the set of
natural numbers that are greater than or equal to k. RZ? denotes the set of nonnegative real numbers and
R>? denotes the set of positive real numbers.

Definition. Let f : N2 — RZ0 for some k € N. O(f) is the following set of functions from N2¢ to R=Y,
for any ¢ € N:

def

of) =

In words, g € O(f) if for all sufficiently large n (for n > ng) g(n) is bounded from above by f(n) —
possibly multiplied by a positive constant. We say that f is an asymptotic upper bound for g.

Example 1. f(n) = 3-n?+44-n%? € O(n?). This is because 3-n? +4-n%2 <3-n>+4-n> < 7-n2
Thus, pick ng = 0 and ¢ = 7. For all n > ng, f(n) < c-n?.

Example 2. f(n) = (n—5)? € O(n?). This is because (n—5)? = n? —10-n+ 25. Check (with elementary
algebra) that for all n > 3, n2 — 10 -n + 25 < 2-n? Thus, pick ng = 3 and ¢ = 2. For all n > nyg,
f(n) <c-n?

{g : there exist ¢ € R”Y and ny € N such that for all n > ng, g(n) < c- f(n)}.

Example 3. n2 —10n ¢ O(n). We prove this by contradiction. Assume the contrary, i.e., that n? —10n €
O(n). Thus, there are constants ¢ > 0 and ng > 0 such that for all n > ng, n? — 10n < cn. Therefore, for
all n > ng, n < ¢+10. Let k£ = 1+max(ng, c+10). Clearly, k > ng but it is not the case that k < ¢+ 10, so
we have derived a contradiction. This means that our original assumption, namely that n? — 10n € O(n),
is wrong. Therefore, n? — 10n ¢ O(n).

Exercise. Prove the following:

1. n € O(n?).

2. 3n+1€0(n).

3. logy n € O(logg n).

4. O(logy n) € O(n). (Hint: logy n < n for all n > 1.)
5. O(n*) C O(n) for all constants 0 < k < /.

There is a similar notation for asymptotic lower bounds, the “big-omega” notation.

Definition. Let f : N2¥F — R20 for some k € N. Q(f) is the following set of functions from NZ¢ to R=,
for any ¢ € N:

def

Q(f) =

In words, g € Q(f) if for all sufficiently large n (for n > ng) g(n) is bounded from below by f(n) — possibly
multiplied by a positive constant. We say f(n) is an asymptotic lower bound for g(n).

{g : there exist d € R™? and mg € N such that for all n > mq, g(n) > d- f(n)}.



Definition. O(f) & O(f) N Q(f).

Thus, if g(n) € O(f) then g(n) and f(n) are within a constant factor of each other.

Exercise. Prove the following.

1. n? € Q(n).

2. Q(n log n) C Q(n).

3. > logy i € ©(n logy n). (Hint for (iii): For [n/2] <i < n, log, i > (logy n) — 1).

The sets O(f), Q(f), and ©(f) have the following useful properties, which you should prove:
g € O(f) if and only if f € Q(g).

O(f) = O(g) if and only if f € O(g) and g € O(f).

O(f) = O(g) if and only if f € O(g).

If f € O(g) and g € O(h) then f € O(h).

If g1 € O(f1) and g2 € O(f2) then g1 + g2 € O(max{fi, fa}).

If g1 € O(f1) and g2 € O(f2) then g1 - g2 € O(f1- f2).



