
Hwajung Lee

Primary standard = rotation of earth

De facto primary standard = atomic clock

(1 atomic second = 9,192,631,770 orbital transitions of

Cesium 133 atom.

86400 atomic sec = 1 solar day – 3 ms

Coordinated Universal Time (UTC) = GMT ± number of hours

in your time zone

A system of 32 satellites broadcast accurate spatial

coordinates and time maintained by atomic clocks

Location and precise time

computed by triangulation

Right now GPS time is nearly

14 seconds ahead of UTC, since

It does not use leap sec. correction

Per the theory of relativity, an

additional correction is needed.

Locally compensate by the

Receivers.

Simultaneous? Happening at the same time?

NO.

There is nothing called simultaneous in the physical world.

Alice

Bob
Explosion 1

Explosion 2

Sequential = Totally ordered in time.

Total ordering is feasible in a single process that has

only one clock. This is not true in a distributed system.

Two issues are important here:

 How to synchronize physical clocks?

 Can we define sequential and concurrent events

without using physical clocks?

Causality helps identify sequential and concurrent
events without using physical clocks.

Joke  Re: joke ( implies causally ordered before or

happened before)

Message sent  message received

Local ordering: a  b  c (based on the local clock)

Rule 1. If a, b are two events in a single process P, and

the time of a is less than the time of b then a  b.

Rule 2. If a = sending a message, and b = receipt of that

message, then a  b.

Rule 3. a  b  b  c  a  c

e  d?
Yes since (e  f  f  d)

a  d ?
Yes since (a  b  b  c  c  d)

(Note that  defines a PARTIAL order).

Is g f or f g?
NO.They are concurrent.

a

b

c

d

e

f

P Q R

t
i

m
e

g

h

Concurrency = absence of causal order

Note: a distributed system cannot always be totally ordered.

LC is a counter. Its value respects

causal ordering as follows

a  b LC(a) < LC(b)

Each process maintains its logical

clock as follows:

LC1. Each time a local event takes

place, increment LC.

LC2. Append the value of LC to

outgoing messages.

LC3. When receiving a message, set

LC to 1 + max (local LC, message

LC)

Total order is important for some

applications like scheduling (first-

come first served). But total order

does not exist! What can we do?

Strengthen the causal order  to

define a total order (<<) among

events. Use LC to define total

order (in case two LC’s are equal,

process id’s will be used to break

the tie).

Let a, b be events in processes
i and j respectively. Then

a << b iff
-- LC(a) < LC(b) OR
-- LC(a) = LC(b) and i < j

a  b  a << b, but the
converse is not true.

The value of LC of an event is called its timestamp.

Causality detection can be an

important issue in applications like

group communication.

Logical clocks do not detect

causal ordering. Vector clocks do.

Mapping VC from events to integer

arrays, and an order < such that

for any pair of a, b:

a  b  VC(a) < VC(b)

joke

Re: joke

Re: jokejoke

A B

C

C may receive Re:joke

before joke, which is bad!

{Actions of process j}

1. Increment VC[j] for each local event.

2. Append the local VC to every outgoing
message.

3. When a process j receives a message with
a vector timestamp T from another
process, first increment the jth component
VC[j] of its own vector clock, and then
update it as follows:

k: 0 ≤ k ≤N-1:: VC[k] := max (T[k], VC[k]).

0,0,0

0,1,0

0,0,0

0,0,0

1,1,0 2,1,0

0,0,1 0,0,2 2,1,3 2,1,4

2,2,4

jth component of VC

Vector Clock of an event in a system of 8 processes

0 1 2 3 4 5 6 7
Example

[3, 3, 4, 5, 3, 2, 1, 4] <

[3, 3, 4, 5, 3, 2, 2, 5]

But,

[3, 3, 4, 5, 3, 2, 1, 4] and

[3, 3, 4, 5, 3, 2, 2, 3]

are not comparable

Let a, b be two events.

Define. VC(a) < VC(b) iff

i : 0 ≤ i ≤ N-1 : VC(a)[i] ≤ VC(b)[i], and

 j : 0 ≤ j ≤ N-1 : VC(a)[j] < VC(b)[j],

VC(a) < VC(b)  a  b

Causality detection

