Hwajung Lee

ITEC₄₅₂ Distributed Computing

Lecture 9
Program Correctness

Program correctness

The State-transition model

The set of global states = $S_0 \times S_1 \times ... \times S_m$ {s_k is the set of local states of process k}

$$So_{action} \rightarrow S1 \xrightarrow{action} S2 \xrightarrow{action}$$

Each transition is caused by an action of an eligible process.

We reason using interleaving

semantics

Correctness criteria

- Safety properties
 - Bad things never happen
- Liveness properties
 - Good things eventually happen

Example 1: Mutual Exclusion

```
      Process o
      Process 1

      do true →
      do true →

      Entry protocol
      Entry protocol

      Critical section
      Critical section

      Exit protocol
      Exit protocol

      od
      od
```

Safety properties

- (1) There is no deadlock
- (2) At most one process enters the critical section.

Liveness property

A process trying to enter the CS must **eventually succeed**. (This is also called the **progress property**)

Testing vs. Proof

Testing: Apply inputs and observe if the outputs satisfy the specifications. Fool proof testing can be painfully slow, even for small systems. Most testing are partial.

Proof: Has a mathematical foundation, and a complete guarantee. Sometimes not scalable.

Correctness proofs

- Since testing is not a feasible way of demonstrating the correctness of program in a distributed system, we will use some form of mathematical reasoning as follows:
 - Assertional reasoning of proving safety properties
 - Use of well-founded sets of proving liveness properties
 - Programming logic
 - Predicate transformers

Review of Propositional Logic

■ Example: Prove that $P \Rightarrow PVQ$

Pure propositional logic is sometimes not adequate for proving the properties of a program, since propositions can not be related to program variables or program state. Yet, an extension of propositional logic, called *predicate logic*, will be used for proving the properties.

Review of Predicate Logic

- Predicate logic is an extension of propositional logic
 cf. A proposition is a statement that is either true or false.
- A predicate specifies the property of an object or a relationship among objects. A predicate is associated with a set, whose properties are often represented using the universal quantifier ____ (for all) and the existential quantifier ____ (there exists).

```
<quantifier><bound variable(s)>:<range>::c(ex) \exists j: j \in N(i) :: c[j] = c[i] +1 \mod 3
```

Examples of Safety invariant Well-known synchronization problems

Invariant means: a logical condition which should always be true.

- 1. The mutual exclusion problem. $N_{CS} \le 1$, where N_{CS} is the Total number of processes in CS at any time
- 2. Producer-consumer problem. $0 \le N_P N_C \le$ buffer capacity $(N_P = no. of items produced, N_C = no. of items consumed)$

Exercise

What can be a safety invariant for the readers and writers problem?

- Only one write can write to the file at a time.
- When a writer write to the file, no process can read.
- Many processes can read at the same time.

Let N_W denote the number of writer processes updating the file and N_R denote the number of reader processes reading the file.

→
$$((N_W = 1) \land (N_R = 0)) \lor ((N_W = 0) \land (N_R \ge 0))$$

Assertional reasoning of proving safety properties (1)

```
define c1, c2: channel; {init c1 = \Phi, c2 = \Phi} r, t: integer; {init r = 5, t = 5}

{program for T}

1     do t > 0 \rightarrow send msg along c1; t:= t-1

2     \neg empty (c2) \rightarrow rcv msg from c2; t:= t+1

od

{program for R}

3     do \neg empty (c1) \rightarrow rcv msg from c1; r:= r+1

4     \neg r > 0 \rightarrow send msg along c2; r:= r-1

od

We want to prove the safety property P:

P = n1 + n2 \leq 10
```

n1= # of messages in c1
n2= # of messages in c2

Assertional reasoning of proving safety properties (2)

Use the method of induction

Liveness properties

 Eventuality is tricky. There is no need to guarantee when the desired thing will happen, as long as it happens.

Type of Liveness Properties

Progress Properties

- If the process want to enter its critical section, it will eventually do.
- No deadlock?

Reachability Properties

- : The question is that S_t is reachable from S_o ?
- The message will eventually reach the receiver.
- The faulty process will be eventually be diagnosed

Fairness Properties

: The question is if an action will eventually be scheduled.

Termination Properties

The program will eventually terminate.

Proving liveness

Use of well-founded sets of proving liveness properties

- o w1, w2, w3, w4 ∈ WF
- WF is a well-founded set whose elements can be ordered by]

If there is no infinite chain like

If an action changes the system state from s1 to s2

$$f(s_i)] f(s_{i+1})] f(s_{i+2}) ...$$

then the computation will definitely terminate!

f is called a measure function

Proof of liveness: an example

Clock phase synchronization

System of n clocks ticking at the same rate.

Each clock is 3-valued, i,e it ticks as 0, 1, 2, 0, 1, 2...

A failure may arbitrarily alter the clock phases.

The clocks need to return to the same phase.

Proof of liveness: an example

Clock phase synchronization

{Program for each clock}
(c[k] = phase of clock k, initially arbitrary)

do
$$\exists j: j \in N(i) :: c[j] = c[i] + 1 \mod 3 \rightarrow c[i] := c[i] + 2 \mod 3$$

od

Show that eventually all clocks will return to the same phase (convergence), and continue to be in the same phase (closure)

Proof of convergence

Understand the game of arrows

Let
$$\mathbf{D} = d[0] + d[1] + d[2] + ... + d[n-1]$$

By definition, $D \ge 0$.

Also, D decreases after every step in the system. So the number of arrows must reduce to 0.

D= 0 means all the clocks are synchronized.