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The State-transition model

The set of global states = 
s0 x s1 x … x sm

{sk is the set of local states of process k}

S0    → S1    → S2  →

Each transition is caused by an action 
of an eligible process.

We reason using interleaving 
semantics
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 Safety properties
▪ Bad things never happen

 Liveness properties
▪ Good things eventually happen



Process 0 Process 1
do true  do true 

Entry protocol Entry protocol
Critical section Critical section
Exit protocol Exit protocol

od od

Safety properties 
(1) There is no deadlock 
(2) At most one process enters the critical section.

Liveness property 
A process trying to enter the CS must eventually succeed. 
(This is also called the progress property)

CS CS



Testing: Apply inputs and observe if the outputs satisfy 
the specifications. Fool proof testing can be painfully 
slow, even for small systems. Most testing are partial.

Proof: Has a mathematical foundation, and a complete 
guarantee. Sometimes not scalable.



 Since testing is not a feasible way of demonstrating 
the correctness of program in a distributed system, 
we will use some form of mathematical reasoning
as follows:

 Assertional reasoning of proving safety properties
 Use of well-founded sets of proving liveness properties
 Programming logic
 Predicate transformers



 Example: Prove that P      P V Q

 Pure propositional logic is sometimes not 
adequate for proving the properties of a program, 
since propositions can not be related to program 
variables or program state. Yet, an extension of 
propositional logic, called predicate logic, will be 
used for proving the properties.

⇒



 Predicate logic is an extension of propositional logic
cf. A proposition is a statement that is either true or false.

 A predicate specifies the property of an object or a 
relationship among objects. A predicate is associated with 
a set, whose properties are often represented using the 
universal quantifier .(for all) and the existential 
quantifier. (there exists).

<quantifier><bound variable(s)>:<range>::<property>
(ex) ∃ j: j ∈ N(i) :: c[j] = c[i] +1 mod 3 



Invariant means: a logical condition which should always be true.

1. The mutual exclusion problem. NCS ≤ 1, 
where NCS is the Total number of processes in CS at any time

producer consumerbuffer

2. Producer-consumer problem. 0 ≤ NP - NC ≤ buffer capacity
(NP = no. of items produced, NC = no. of items consumed)



What can be a safety invariant for the readers and 
writers problem?
 Only one write can write to the file at a time. 
 When a writer write to the file, no process can read.
 Many processes can read at the same time.

Let NW denote the number of writer processes updating the file 
and NR denote the number of reader processes reading the file.

 ((NW = 1) Λ (NR=0)) V ((NW =0) Λ (NR≥0))



define c1, c2 : channel; {init c1 = Φ, c2 = Φ}
r, t : integer; {init r = 5, t = 5}

{program for T}
1 do t > 0→ send msg along c1; t := t -1
2 � ¬empty (c2) → rcv msg from c2; t := t + 1

od

{program for R}
3 do ¬empty (c1) → rcv msg from c1; r := r+1
4 � r > 0 → send msg along c2; r := r-1

od

We want to prove the safety property P:
P ≡ n1 + n2 ≤ 10

T R

c1

c2

transmitter receiver

n1= # of messages in c1
n2= # of messages in c2



n1, n2 = # of msg in c1and c2 respectively.
We will establish the following invariant:

I ≡ (t ≥ 0) ∧ (r ≥ 0) ∧ (n1 + t + n2 + r = 10)
(I implies P). Check if I holds after every action.

{program for T}
1 do t > 0→ send msg along c1; t := t -1
2 � ¬empty (c2) → rcv msg from c2; t := t+1

od

{program for R}
3 do ¬empty (c1) → rcv msg from c1; r := r+1
4 � r > 0 → send msg along c2; r := r-1

od

T R

c1

c2

Use the method of induction



 Eventuality is tricky. There is no need to guarantee 
when the desired thing will happen, as long as it 
happens.



Progress Properties
♦ If the process want to enter its critical section, it will 

eventually do.
♦ No deadlock? 

Reachability Properties
: The question is that St is reachable from S0?
♦ The message will eventually reach the receiver.
♦ The faulty process will be eventually be diagnosed

Fairness Properties
: The question is if an action will eventually be scheduled.

Termination Properties
♦ The program will eventually terminate.



S1→ S2 → S3 → S4 →
↓ f ↓ f ↓ f ↓ f

w1 w2 w3 w4

o w1, w2,  w3, w4  ∈ WF
o WF is  a well-founded set

whose elements can be 
ordered by ]

If there is no infinite chain like

w1 ] w2 ] w3 ] w4 ..., i.e.

If an action changes the system 
state from s1 to s2

f(si) ] f(si+1) ] f(si+2) ... 

Global state Global state

then the computation will
definitely terminate!

f is called a measure function



c[0]

c[n-1]

c[3]

c[2]

c[1]

Clock phase synchronization

System of n clocks ticking at the  same rate.
Each clock is 3-valued, i,e it ticks as 0, 1, 2, 0, 1, 2…
A failure may arbitrarily alter the clock phases.
The clocks need to return to the same phase. 



Clock phase synchronization
{Program for each clock}
(c[k] = phase of clock k, initially arbitrary)
do ∃ j: j ∈ N(i) :: c[j] = c[i] +1 mod 3 →

c[i] := c[i] + 2 mod 3

� ∀ j: j ∈ N(i) :: c[j] ≠ c[i] +1 mod 3 →
c[i] := c[i] + 1 mod 3

od

Show that eventually all clocks will return 
to the same phase (convergence), and
continue to be in the same phase (closure)

c[k] ∈ {0,1,2}

c[0]

c[n-1]

c[3]

c[2]

c[1]



Let D = d[0] + d[1] + d[2] + … + d[n-1]

d[i] = 0 if no arrow points towards clock i;
= i + 1 if a ← pointing towards clock i;
= n – i if a → pointing towards clock i;
= 1 if both ← and  → point towards

clock i.

By definition, D ≥ 0. 
Also, D decreases after every step in 
the system. So the number of arrows 
must reduce to 0.
D= 0 means all the clocks are 
synchronized.

0 2 02 2

1 1 10 1

2 2 22 2

Understand the game of arrows
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