ITEC452 Final Exam Study Guide

Lecture 8 Cloud Computing

- What does cloud computing do? (slide 4)
- What is a cloud? (slide 6)
- Cloud Models
 - Public Cloud
 - Private Cloud
 - Community Cloud
 - Hybrid Cloud
- Cloud Service Models
 - What is each of the following? What are benefits of each of the following?
 - Software as a Service (SaaS)
 - Platform at a Service (PaaS)
 - Infrastructure as a Service (laaS)
 - More models: XaaS
 - Network as a Service (NaaS)
 - Database as a Service (DaaS)
 - Business as a Service (BaaS)
- Cloud Benefits
 - High Efficiency, Reliability, Flexibility
 - o Applications as Utilities over Internet
 - Manipulate and Configure Apps Online
 - Cost Effective
 - No Software Required
 - Online Development and Deployment tools
 - o On-demand Self Service
 - Resources Available on Network
- Cloud Computing Characteristics
 - Essential Characteristics
 - On Demand Self-Service
 - Common Characteristics
 - Broad Networks Access
 - Rapid Elasticity
 - Resource Pooling
 - Measured Services
 - Massive Scale
 - Resilient Computing
 - Homogeneity
 - Geographic Distribution
 - Virtualization
 - Service Orientation
 - Low Cost Software

- Big Data
 - Big Data's 4V Big Challenges
 - Volume Data Size
 - 40 Zettabytes (10²¹) of data is predicted to be created by 2020
 - 2.5 Quintillionbytes (10¹⁸) of data are created every day
 - 6 Billion (10⁹) people have mobile phones
 - 100 Terabytes (10¹²) of data (at least) is stored by most U.S. companies
 - 966 Petabytes (10¹⁵) was the approximate storage size of the American manufacturing industry in 2009
 - Variety Data Formats
 - 150 Exabytes (10¹⁸) was the estimated size of data for health care throughout the world in 2011
 - More than 4 Billion (10⁹) hours each month are used in watching YouTube
 - 30 Billon contents are exchanged every month on Facebook
 - 200 Million monthly active users exchange 400 Million tweets every day
 - Velocity Data Streaming Speeds
 - 1 Terabytes (10¹²) of trade information is exchanged during every trading session at the New York Stock Exchange
 - 100 sensors (approximately) are installed in modern cars to monitor fuel level, tire pressure, etc.
 - 18.9 Billion network connections are predicted to exist by 2016
 - Veracity Data Trustworthiness
 - 1 out of 3 business leaders have experienced trust issues with their data when trying to make a business decision
 - \$3.1 Trillion (10¹²) a year is estimated to be wasted in the U.S. economy due to poor data quality

Hadoop

- Demand: Data Storage, Access, and Analysis
 - Hard drive storage capacity has tremendously increased
 - But the data read and write speeds to and from the hard drives have not significantly improved yet
 - Simultaneous parallel read and write of data with multiple hard disks requires advanced technology
- Hadoop is a Reliable Shared Storage and Analysis System
- Hadoop = HDFS + MapReduce + α
 - HDFS (Hadoop Distributed FileSystem) provides Data Storage
 - MapReduce provides Data Analysis
 - MapReduce = (Map Function) + (Reduce Function)
- HDFS
 - DFS (Distributed FileSystem) is designed for storage management of a network of computers
 - HDFS is optimized to store huge files with streaming data access patterns
 - HDFS is designed to run on clusters of general computers

- HDFS was designed to be optimal in performance for a WORM (Write Once, Read Many times) pattern, which is a very efficient data processing pattern
- HDFS was designed considering the time to read the whole dataset to be more important than the time required to read the first record
- MapReduce
 - MapReduce is a program that abstracts the analysis problem from stored data
 - MapReduce transforms the analysis problem into a computation process that uses a set of keys and values
 - MapReduce Architecture
 - MapReduce was designed for tasks that consume several minutes or hours on a set of dedicated trusted computers connected with a broadband high-speed network managed by a single master data center
 - MapReduce Characteristics
 - MapReduce uses a somewhat brute-force data analysis approach
 - The entire dataset (or a big part of the dataset) is processed for every query
 - → Batch Query Processor model
 - MapReduce enables the ability to run an ad hoc query against the whole dataset within a scalable time
 - Many distributed systems combine data from multiple sources (which is very difficult), but MapReduce does this in a very effective and efficient way

Lecture 10 Cloud Services Model: MapReduce and HDFS

- Hadoop uses HDFS to move the MapReduce computation to several distributed computing machines that will process a part of the divided data assigned
- MapReduce
 - ⇒ Need to know how does it work?
 - Jobs
 - Map Task
 - Reduce Task
 - Node types for Job Execution
 - Jobtracker
 - Tasktracker
 - Data Flow
 - Split
 - o MapReduce paper by Google
 - Needs to be able to explain:
 - the execution overview (Section 3.1)
 - how it reacts at a worker failure (Section 3.3)
- HDFS
 - Hadoop Distributed File System by Yahoo
 - Hadoop project components (Section 1; Table 1)

- Architecture
 - Name Node: What is Name Node? How does it work? (Section II.A)
 - Data Nodes: What is Data Node? How does it work? (Section II.B)
 - Image and Journal: What are these? How do they work? (Section II.D)
- File I/O Operations and Replica Management
 - How the block placement works? (Section III.B)
 - How the replication management works? (Section III.C)