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Data Deluge Enabling New Challenges
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From Desktop/HPC/Grids
to Internet Clouds in 30 Years

B HPC moving from centralized supercomputers
to geographically distributed desktops, desksides,
clusters, and grids to clouds over last 30 years

B R/D efforts on HPC, clusters, Grids, P2P, and virtual
machines has laid the foundation of cloud computing
that has been greatly advocated since 2007

B Location of computing infrastructure in areas with
lower costs in hardware, software, datasets,
space, and power requirements — moving from
desktop computing to datacenter-based clouds



Interactions among 4 technical challenges:
Data Deluge, Cloud Technology, eScience,
and Multicore/Pareallel Computing

Cloud
Technology

(Courtesy of Judy Qiu, Indiana University, 2011)



Evolutionary Trend
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Technology Convergence toward HPC for
Science and HTC for Business

Web services
Datacentres

Ltility Computing
Service Computing

HTC in
Business
and HPC in

Grid Computing Scientific

P2P Computing Applications
(loud Computing

Computing Paradigms

B Ubiguitous : Reliable and Scalable
B Autonomic : Dynamic and Discovery
B Composable : QoS, SLA, etc.

Attributes/Capabilities

(Courtesy of Raj Buyya, University of Melbourne, 2011)




Major technological challenges
to build distributed system

1.New network-efficient processors
2.Scalable memory and storage schemes
3.Distributed OSes

4. Middleware for machine virtualization
5.New programming models

6.Efficient resource management
7.Application program development
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Hype Cycle for Emerging Tech, 2022
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Internet of Things (loT)

e Introduced in 1999 at MIT
e Whatis loT?

> The networked interconnection of everyday objectes,
tools, devices, or computers.

> A wireless network of sensors that interconnect all
things in our daily life.
e I|deaofloT

> To tag every object using RFID or a related sensor
or electronic technology such as GPS.

> With IPv6 protocol, 21?8 |IP addresses are available to
distinguish all the objects on Earth, including all
computers and pervasive devices
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Internet of Things (loT)

e Requirements

> Track 100 trillion static or moving object
simultaneously.

> Need universal addressability of all of the objects or
things.

> To reduce the complexity of identification, search,
and storage, one can set the threshold to filter out
fine-grain objects.

e All the objects and devices:

> Instrumented, interconnected, and interacted with
each other intelligently.
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Internet of Things (loT)

e Communication Patterns
> H2H (human-to-human)

> H2T (human-to-thing)
> 12T (thing-to-thing)

e \Vhat to achieve: a smart Earth

> Intelligent cities

» Clean water

> Efficient power

» Convenient transportation
» Good food supplies

» Responsible banks

» Fast telecommunications
» Green IT

» Better schools

» Good health care

» Abundant resource

» and so on
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Cyber-Physical Systems (CPS)

e CPS

> Integrates “cyber” (heterogeneous, asynchronous)
with “physical” (concurrent and information-dense)
objects

> Merges the “3C” technologies of computation,
communication, and control into an intelligent closed
feedback system between the physical world and the
information world.

e Difference: loT vs. CPS

> loT emphasizes various networking connections
among physical objects.

> CPS emphasizes exploration of virtual reality (VR)
applications in the physical world to interact with
the physical world.
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Multicore CPUs
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Moore’s Law: The number of transistors on microchips doubles every two years [SaWIL!

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Multicore CPU chip using a hierarchy of caches

Multicore Processor

Core n

L.2 Cache

L3 Cache /{ DRAM

» L1 cache is private to each core
» On-chip L2 cache is shared
» L3 cache or DRAM is off the chip

16



Multicore CPUs and Multithreading Technologies

Thread 1 Thread 3 Thread 5

| il
]

Thread 2 Idle slot (blank)

d-issue Fine-grain Coarse-grain Dual-core Simultaneous
Superscalar Multithreaded  Multithreaded [ 2-processor Multithreaded
Processor Processor Processor CNMP) (SMT) Processor

]

CELELNRLLER

~1 '

i
i
B
N ELELRY

o’

:n.
[
kS,

HZa
LUCES

R b
. Py

v

JO0000O0&#B0

UBLUELN

CELECRCOES
ISEUEZRDS

7] =

SO WL ELR
URUUERuuULLE
1N (N (W) (NN

HCRZE )

&

O

Time
icyvele)

I

B EOUCUDEC SO
OB EEELELE

BOOBELD0OUCE

i
|
L]
i

A ELECEUEUS

B
[
|
U

Figure 1. 8 Five micro-architectures that are cunrent in use in modern processors that exploit
both ILLP and TLP supported by multicore and multithreading technologies




Graphics Processing Unit (GPU)
o GPU

> graphics coprocessor or accelerator mounted on a
computer’'s graphics card of video card.

e General-purpose computing on GPU (GPGPU)
> NVIDIA’s CUDA model was for HPC using GPGPUs.

e Modern GPUs

> To power supercomputers with massive parallelism
at multicore and multithreading levels.
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GPU: Architecture of A Many-Core
Multiprocessor GPU interacting
with a CPU Processor

For massively parallel execution in 100s or 1000s of processing

20
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GPU: (ex) NVIDIA TITAN V

as of 2022

Graphics Professing Clusters |6
Streaming Multiprocessors 89

CUDA Core (single precision) |5120
Texture Units 320

Base Clock (MHz) 1200 MHz
Boost Clock (MHZz) 1455 MHz

22



Comparison of the CPU and GPU
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GPU and CPU performance in Gllops/MWalt/core, compared with @0 Gllops/Watt/core projected in future

Exascals syslems.

Bill Dally of Stanford Univ. considers
power and massive parallelism are major benefits of GPUs

over CPUs for the future.
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Datacenter and Server Cost Distribution
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Virtual Machine Architecture

After Virtualization:

- Hardware-independence of operating
system and applications

« Virtual machines can be provisioned to any
system

« Can manage OS5 and application as a single
unit by encapsulating them into virtual
machines

(Courtesy of VMWare, 2010)
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Primitive Operations in Virtual Machines:

App App
05 08

Storage Storsge

05
{a) Muliplexing ib) Suspension (storage)

App
05 App
| =
" |
[ Hardwars |

Storage Storsge

() Provision (resume) (d) Life migraition

FIGURE 1.13

VM mult plexing, suspension, provision, and migration in a dietributed computing environment.
{Courtesy of M. Resenbium, Keynote sddress, ACM ASPLOS 2006 [41])




Concept of Virtual Clusters

Fig.1l. A Campus Area Grid Fig.2. Virtual machines in a cluster
environment

(Source: W. Emeneker, et et al, “Dynamic Virtual Clustering with Xen and Moab,
ISPA 2006, Springer-Verlag LNCS 4331, 2006, pp. 440-451)
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Table 1.2 Classification of Distributed Parallel Computing Systems

Functionality,
Applications

Multicomputer
Clusters [27, 33]

Peer-to-Peer
Networks [40]

Data/Computational
Grids [6, 42]

Cloud Platforms
[1, 9,12, 17, 29]

Architecture,
Network

Connectivity
and Size

MNetwork of compute
nodes interconnected
by SAN, LAN, or
WAN, hierarchically

Flexible network of
client machines
logically connected by
an overlay network

Heterogeneous clusters
interconnected by high-
speed network links over
selected resource sites.

Virtualized cluster of
servers over datacenters
via senvice-level
agreement

Control and
Resources
Management

Homogeneous nodes
with distributed control,
running Unix or Linux

Autonomous client

nodes, free in and out,
with distributed self-
organization

Centralized control,
server oriented with
authenticated security,
and stafic resources

Dynamic resource
provisioning of servers,
storage, and networks
over massive datasets

Applications
and network-

centric services

High-performance
computing, search
engines, and web
senvices, efc.

Muost appealing to
business file sharing,
content delivery, and
social networking

Distributed super-
computing, global
problem solving, and
datacenter senvices

Upgraded web search,
utility computing, and
outsourced computing
Senices

Representative
Operational
Systems

Google search engine,
SunBlade, |IBM Road
Runner, Cray XT4, etc.

Gnutella, eMule,
BitTorrent, Napster,
KaZaA, Skype, JXTA,
and NET

TeraGrid, GnPhyN,
UK EGEE, D-Grid,
ChinaGnd, etc.

Google App Engine, IBM
Bluecloud, Amazon Web
Service{AWS), and
Microsoft Azure,




A Typical Cluster Architecture

A Cluster @ e
SAN, LAN. MAS Natworks

° (Etharnat, Myrinet, InfiniBand, etc.)
@ 0 devices Disk arrays

FIGURE 1.15

A cluster of servers interconnected by a high-bandwidth SAN or LAN with shared 110 devices and disk amays;
the cluster acts as a single computer attached to the Internet.
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Computational grid or data grid providing computing ulility, data and information ssrvices through resource
sharing and cooperation among parlicipaling organizations.




A Typical Computational Grid
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Figure 1.17 An example computational Grid built over specialized computers at three
resource sites at Wisconsin, Caltech, and lllinois. (Courtesy of Michel Waldrop,
“Gnd Computing”, IEEE Computer Magazine, 2000. [42])
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FIGURE 1.17

The structure of a P2P System by mapping a physical 1P network 1o an overlay network built with virtual
Liriks.

(Courtesy of Zhenyu Li, Institute of Computing Technology, Chinese Academy of Sclences, 2




Table 1.5 Major Categories of P2P Network Families [42]

System

Features

Attractive
Applications

Operational
Prablems

Example
Syatems

Distributed File
Sharing

Content
dstribution of MP3
music, video, aopen
software, etc.
Looss securty and
senous online
copynght wolabons

Gnutella, Mapster,
eMule, BitToment,
Aamater, Kafad,
etc.

Collaborative
Platform

Instant messaging,
coliabaratve
design and gaming

Lack of trust,
disturbed by
spam, privacy, and
peer collusion

120, AN, Groowe,
Magi, Multiplayer
Games, Skype,
etc.

Distributed P2P
Computing

Scientific
exploration and
socil netwarking

Security hales,
selhish partners,
and peer collusion

SETI@home,
Geonome@home,
(=] (o

P2P Platform

Open networks for
public resources

Lack of standards
or protecton
protocols

JHTA, NET,
FightingAsd@home,
et




The Cloud

e Historical roots in today’ s
Internet apps

« Search, email, social networks

= File storage (Live Mesh, Mobile
Me, Flicker, ...)

e A cloud infrastructure provides a
framework to manage scalable,
reliable, on-demand access to
applications

e A cloud is the “invisible” backend to
many of our mobile applications

e A model of computation and data
storage based on “pay as you go”
access to “unlimited” remote data
center capabilities




Basic Concept of Internet Clouds
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The Next Revolution In IT
Cloud Computing

Every 18 months?

Classical
Computing
> Buy & Own

Hardware, System
Software,
Applications often to
meet peak needs.

> Install, Configure, Test,
Verify, Evaluate

> Manage

>  Finally, use it
> $$%$....$(High CapEx)

Cloud Computing

>
>

>

Subscribe
Use

$ - pay for what you use,
based on QoS

(Courtesy of Raj Buyya, 2012)
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FIGURE 1.19

Three cloud service models in a clud landscape of major providers.
[ Courtesy of Dennis Gannon, keynode address & ChoudcomZ010 [19])




Cloud Computing Challenges:
Dealing with too many ISSUES (courtesy of r. Buyya)

Scalability
Reliability l

Billing

P"OVl'Sioning

Utility & Risk

Management

Legal &
Regulatory

Software Eng.

Complexity
Programming Env.
& Application Dev. ‘
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The Internet of Things (loT)

B Smart Earth

39



Opportunities of loT in 3 Dimensions

= On the move
« Dutdoors and indoors

= Might = Onthe move
*Daytime = Dutdoors
* Indoors (away from the PC)

- At the PC
-4 Any PLACE connection

= Batween PCs
* Humanto Human (H2H), not usinga PC

* Human to Thing (H2T), using genenic equipmant
+ Thing to Thing (T2T)

Any THING connection

(courtesy of Wikipedia, 2010)




System Scalability vs. OS Multiplicity
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FIGURE 1.23
Syslem scalability versus multiplicity of 08 imagses basad on 2010 lechnology.




System Availability vs. Configuration Size :
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FIGURE 1.24

Estimated system availability by system size of common configurations in 2010,




Table 1.6 Feature Comparison of Three Distributed Operating Systems

Distributed OS
Functionality

History and Cument
Syatem Status

Distibuted OS5
Architecture

05 Kermmeal, Middewars,

and \irtualzation
Support

Communication
Mechanisms

AMOEBA developed
at Vrije University [46]

Whitten in © and tested
in the Burmpesan
community; version 5.2
released n 1995

Microkernel-based and
locaton-transparent,
USEsS many senvers to
handle files, directory,
replication, run, boot,
arnd TCPAP services
A special microkernal
that handles low-level
process, memory, 1O,
and communication
Tunchions

Uses a network-layer
FLIF protocal and RPC
to implement pont-to-
point and group
Commurmcaton

DCE as OSF/M1 by
Open Software
Found ation [7]

Built as a user
externson an top of
LN, WS, Windows,
0572, ste.

Middleware OS5
providing a platfaorm for
running distributed
apphcations; The
gystemn supports RPC,
sacunty, and threads

[CE packages handle
file time, directory,
sacunty senices, RPC,
and authentication at
middleware or user
space

RPC supports
authenticated
communication and
other secunty sences
IN USEer programs

MOSIX for Linux
Clusters at Hebrew
University [3]

Developed since 1977,
now called MOSIZ
used in HPC Linwe and
GPU clusters

A dEtributed OS5 with
resource discovery,
process migration,
runtime support, load
balancing, flood control,
conhguration, &ic.
MOS 2 uns with
Linwx 2.6; exdensions
for use in multtiple
clusters and clouds
with provisionad Vs

Using PWM, MPI in
coliectve
commurcatons,
priorty process control,
and queuing senices




Transparent Cloud Computing Environment

Cloud Data Storage .., Data owned by users,
User Data de!:len_tlent of
applications,
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Application 4 G K .
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Standard programming interface for vanous environment
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Standard hardware interface for users to choose different OSes

e o
re — L E
- ) —
T thE B e 1 R e e e ol e o e e e |

Figure 3 Transparent computing that separates the user data, application, O8, and hardware
in time and space — an ideal model for future Cloud platform construction




Parallel and Distributed Programming

Model
WP

MapReduce

Hadoop

Table 1.7 Parallel and Distributed Programming Models and Tool Sets

Description

A library of subprograms that can be
called from C or FORTRAN to write
parallel programs running on distributed
computer syatems (628,42

A Web programming model for scalable
data processing on large clusters over
large data sets, or in Web search
operations [16]

A software library to write and run large
user applications on vast data sets in
busingss applications (http:/hadoap
Apache.org/core|

Features

Specify synchronous or asynchronous
paint-to-point and collectve
communication commands and O
Opérabions in user programs for
Message-passing execution

Map funchon generates a set of
ntermediate keyvalue pairs; Reduce
function mergés all intermediate values
with the same key

A scalable, economical, efficient, and
reliable tool for providing usérs with
easy access of commercial clusters




Grid Standards and Middleware :

Table 1.9 Grid 5tandards and Toolkits for scientific and Engineering Applications

Tid Standards Major Grid Service Eev Feature: and Security
Functionalities Infrastrocture

OGSA Open Grid Service Architecturs Support heterogensons distnbuted eovironment,
Standard affers common zrad service brdging CA, mukiple trusted mismmedianss,
standards for peneral public uss dynamuc policies, muliple ssqunity mechanisms, etc,

Clobus Fesource allocatton, Globus security] Sigp-in pmalii-site authentication with PEI, Kerberos,
Toolldts mfrastrachure (51, and genersc 551, Proxy, delegation, and G55 AP] for messaze
secunty semice API integrity and confdentaliy

IBM Grid | AIX and Linux grds built on top Usimg simple CA, sTanfing access, gnd semvice (ReGh),
Toolbox of Globus Toolkit, autonomsc suppariing Grid application for Java (GAF4]), GrndMap
compuiing, Replica services in IntraCenid for secarity update.
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FIGURE 1.26

Faur aperational Byers of districuted computing systems.
iCountesy of Fomaya, Rivand! and Lee of the Uindversly of Sydney [53])




Energy Efficiency :
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Figure 1.30 DVFS technigue (right) original task {left) voltage-frequency scaled task
(Courtesy of R.Ge, et al, "Perfformance Constrained Distributed DVS Scheduling for Scientfic
Applications on Power-aware Clusters®, Proc. of AGM Supercomputing Gonf,, 2005 [18].)
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System Attacks and Network Threads
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FIGURE 1.25

Various syslem allacks and nebwork threals 1o the cyberspace.
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