Distributed and Cloud Computing K. Hwang, G. Fox and J. Dongarra Lecture 1: Enabling Technologies and Distributed System Models #### Data Deluge Enabling New Challenges (Courtesy of Judy Qiu, Indiana University, 2011) ## From Desktop/HPC/Grids to Internet Clouds in 30 Years - HPC moving from centralized supercomputers to geographically distributed desktops, desksides, clusters, and grids to clouds over last 30 years - R/D efforts on HPC, clusters, Grids, P2P, and virtual machines has laid the foundation of cloud computing that has been greatly advocated since 2007 - Location of computing infrastructure in areas with lower costs in hardware, software, datasets, space, and power requirements moving from desktop computing to datacenter-based clouds # Interactions among 4 technical challenges: Data Deluge, Cloud Technology, eScience, and Multicore/Pareallel Computing (Courtesy of Judy Qiu, Indiana University, 2011) ## **Evolutionary Trend toward Clouds and Internet of Things** Source: K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud Computing, Morgan Kaufmann, 2012. HPC: High-Performance Computing HTC: High-Throughput Computing P2P: **Peer to Peer** MPP: Massively Parallel Processors ## Technology Convergence toward HPC for Science and HTC for Business (Courtesy of Raj Buyya, University of Melbourne, 2011) ## Major technological challenges to build distributed system - 1. New network-efficient processors - 2. Scalable memory and storage schemes - 3. Distributed OSes - 4. Middleware for machine virtualization - 5. New programming models - 6.Efficient resource management - 7. Application program development #### 2011 Gartner "IT Hype Cycle" for Emerging Technologies plateau #### **Hype Cycle for Emerging Tech, 2022** ### Internet of Things (IoT) - Introduced in 1999 at MIT - What is IoT? - The networked interconnection of everyday objectes, tools, devices, or computers. - A wireless network of sensors that interconnect all things in our daily life. - Idea of IoT - To tag every object using RFID or a related sensor or electronic technology such as GPS. - With IPv6 protocol, 2¹²⁸ IP addresses are available to distinguish all the objects on Earth, including all computers and pervasive devices ### Internet of Things (IoT) - Requirements - Track 100 trillion static or moving object simultaneously. - Need universal addressability of all of the objects or things. - To reduce the complexity of identification, search, and storage, one can set the threshold to filter out fine-grain objects. - All the objects and devices: - Instrumented, interconnected, and interacted with each other intelligently. ## Internet of Things (IoT) - Communication Patterns - H2H (human-to-human) - H2T (human-to-thing) - T2T (thing-to-thing) - What to achieve: a smart Earth - Intelligent cities - Clean water - Efficient power - Convenient transportation - Good food supplies - Responsible banks - Fast telecommunications - Green IT - Better schools - Good health care - Abundant resource - > and so on ## Cyber-Physical Systems (CPS) #### CPS - Integrates "cyber" (heterogeneous, asynchronous) with "physical" (concurrent and information-dense) objects - Merges the "3C" technologies of computation, communication, and control into an intelligent closed feedback system between the physical world and the information world. #### Difference: IoT vs. CPS - loT emphasizes various networking connections among physical objects. - CPS emphasizes exploration of virtual reality (VR) applications in the physical world to interact with the physical world. #### **Multicore CPUs** FIGURE 1.4 Improvement in processor and network technologies over 33 years. #### Moore's Law: The number of transistors on microchips doubles every two years Our World in Data Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser. OurWorldinData.org - Research and data to make progress against the world's largest problems. #### Multicore CPU chip using a hierarchy of caches - > L1 cache is private to each core - On-chip L2 cache is shared - L3 cache or DRAM is off the chip #### Multicore CPUs and Multithreading Technologies Figure 1. 8 Five micro-architectures that are current in use in modern processors that exploit both ILP and TLP supported by multicore and multithreading technologies ### **Graphics Processing Unit (GPU)** - GPU - graphics coprocessor or accelerator mounted on a computer's graphics card of video card. - General-purpose computing on GPU (GPGPU) - NVIDIA's CUDA model was for HPC using GPGPUs. - Modern GPUs - To power supercomputers with massive parallelism at multicore and multithreading levels. #### GPU: Architecture of A Many-Core Multiprocessor GPU interacting with a CPU Processor For massively parallel execution in 100s or 1000s of processing NVIDIA Femi GPU built with 16 streaming multiprocessors (SMs) of 32 CUDA cores each; only one SM is shown. ## GPU: (ex) NVIDIA TITAN V as of 2022 | Graphics Professing Clusters | 6 | |------------------------------|----------| | Streaming Multiprocessors | 89 | | CUDA Core (single precision) | 5120 | | Texture Units | 320 | | Base Clock (MHz) | 1200 MHz | | Boost Clock (MHz) | 1455 MHz | ## Comparison of the CPU and GPU in performance/power ratio Bill Dally of Stanford Univ. considers power and massive parallelism are major benefits of GPUs over CPUs for the future. #### **Datacenter and Server Cost Distribution** #### Virtual Machine Architecture #### **Primitive Operations in Virtual Machines:** #### FIGURE 1.13 VM multiplexing, suspension, provision, and migration in a distributed computing environment. (Courtesy of M. Rosenblum, Keynote address, ACM ASPLOS 2006 [41]) ### **Concept of Virtual Clusters** Fig. 1. A Campus Area Grid Fig. 2. Virtual machines in a cluster environment (Source: W. Emeneker, et et al, "Dynamic Virtual Clustering with Xen and Moab, ISPA 2006, Springer-Verlag LNCS 4331, 2006, pp. 440-451) Table 1.2 Classification of Distributed Parallel Computing Systems | Functionality,
Applications | Multicomputer
Clusters [27, 33] | Peer-to-Peer
Networks [40] | Data/Computational
Grids [6, 42] | Cloud Platforms
[1, 9, 12, 17, 29] | |--|--|--|---|--| | Architecture,
Network
Connectivity
and Size | Network of compute
nodes interconnected
by SAN, LAN, or
WAN, hierarchically | Flexible network of
client machines
logically connected by
an overlay network | Heterogeneous clusters
interconnected by high-
speed network links over
selected resource sites. | Virtualized cluster of
servers over datacenters
via service-level
agreement | | Control and
Resources
Management | Homogeneous nodes with distributed control, running Unix or Linux | Autonomous client
nodes, free in and out,
with distributed self-
organization | Centralized control,
server oriented with
authenticated security,
and static resources | Dynamic resource provisioning of servers, storage, and networks over massive datasets | | Applications
and network-
centric services | High-performance
computing, search
engines, and web
services, etc. | Most appealing to business file sharing, content delivery, and social networking | Distributed super-
computing, global
problem solving, and
datacenter services | Upgraded web search,
utility computing, and
outsourced computing
services | | Representative
Operational
Systems | Google search engine,
SunBlade, IBM Road
Runner, Cray XT4, etc. | BitTorrent, Napster, | TeraGrid, GriPhyN,
UK EGEE, D-Grid,
ChinaGrid, etc. | Google App Engine, IBM
Bluecloud, Amazon Web
Service(AWS), and
Microsoft Azure, | ### **A Typical Cluster Architecture** #### FIGURE 1.15 A cluster of servers interconnected by a high-bandwidth SAN or LAN with shared I/O devices and disk arrays; the cluster acts as a single computer attached to the Internet. #### FIGURE 1.16 Computational grid or data grid providing computing utility, data and information services through resource sharing and cooperation among participating organizations. #### **A Typical Computational Grid** Figure 1.17 An example computational Grid built over specialized computers at three resource sites at Wisconsin, Caltech, and Illinois. (Courtesy of Michel Waldrop, "Grid Computing", IEEE Computer Magazine, 2000. [42]) #### FIGURE 1.17 The structure of a P2P System by mapping a physical IP network to an overlay network built with virtual Links. (Courtesy of Zhenyu Li, Institute of Computing Technology, Chinese Academy of Sciences, 2 | Table 1.5 Major Categories of P2P Network Families [42] | | | | | | | | |---|--|--|--|---|--|--|--| | System
Features | Distributed File
Sharing | Collaborative
Platform | Distributed P2P
Computing | P2P Platform | | | | | Attractive
Applications | Content
distribution of MP3
music, video, open
software, etc. | Instant messaging,
collaborative
design and gaming | Scientific
exploration and
social networking | Open networks for
public resources | | | | | Operational
Problems | Loose security and
serious online
copyright violations | Lack of trust,
disturbed by
spam, privacy, and
peer collusion | Security holes,
selfish partners,
and peer collusion | Lack of standards
or protection
protocols | | | | | Example
Systems | Gnutella, Napster,
eMule, BitTorrent,
Aimster, KaZaA,
etc. | ICQ, AIM, Groove,
Magi, Multiplayer
Games, Skype,
etc. | SETI@home,
Geonome@home,
etc. | JXTA, .NET,
FightingAid@home,
etc. | | | | ### The Cloud - Historical roots in today's Internet apps - Search, email, social networks - File storage (Live Mesh, Mobile Me, Flicker, ...) - A cloud infrastructure provides a framework to manage scalable, reliable, on-demand access to applications - A cloud is the "invisible" backend to many of our mobile applications - A model of computation and data storage based on "pay as you go" access to "unlimited" remote data center capabilities #### **Basic Concept of Internet Clouds** ## The Next Revolution in IT Cloud Computing - ClassicalComputing - Buy & Own - Hardware, System Software, Applications often to meet peak needs. - Install, Configure, Test, Verify, Evaluate - Manage - **>** ... - Finally, use it - > \$\$\$\$....\$(High CapEx) - Cloud Computing - Subscribe - Use \$ - pay for what you use, based on QoS (Courtesy of Raj Buyya, 2012) #### FIGURE 1.19 Three cloud service models in a cloud landscape of major providers. (Courtesy of Dennis Gannon, keynote address at Cloudcom2010 [19]) # Cloud Computing Challenges: Dealing with too many issues (Courtesy of R. Buyya) ## The Internet of Things (IoT) Smart Earth: An IBM Dream ## Opportunities of IoT in 3 Dimensions (courtesy of Wikipedia, 2010) #### System Scalability vs. OS Multiplicity FIGURE 1.23 System scalability versus multiplicity of OS images based on 2010 technology. #### System Availability vs. Configuration Size: FIGURE 1.24 Estimated system availability by system size of common configurations in 2010. | Table 1.6 Feature Comparison of Three Distributed Operating Systems | | | | | |---|--|--|---|--| | Distributed OS
Functionality | AMOEBA developed at Vrije University [46] | DCE as OSF/1 by
Open Software
Foundation [7] | MOSIX for Linux
Clusters at Hebrew
University [3] | | | History and Current
System Status | Written in C and tested
in the European
community; version 5.2
released in 1995 | Built as a user
extension on top of
UNIX, VMS, Windows,
OS/2, etc. | Developed since 1977,
now called MOSIX2
used in HPC Linux and
GPU clusters | | | Distributed OS
Architecture | Microkernel-based and
location-transparent,
uses many servers to
handle files, directory,
replication, run, boot,
and TCP/IP services | Middleware OS
providing a platform for
running distributed
applications; The
system supports RPC,
security, and threads | A distributed OS with
resource discovery,
process migration,
runtime support, load
balancing, flood control,
configuration, etc. | | | OS Kernel, Middleware,
and Virtualization
Support | A special microkernel
that handles low-level
process, memory, I/O,
and communication
functions | DCE packages handle
file,time, directory,
security services, RPC,
and authentication at
middleware or user
space | MOSIX2 runs with
Linux 2.6; extensions
for use in multiple
clusters and clouds
with provisioned VMs | | | Communication
Mechanisms | Uses a network-layer
FLIP protocol and RPC
to implement point-to-
point and group
communication | RPC supports
authenticated
communication and
other security services
in user programs | Using PVM, MPI in collective communications, priority process control, and queuing services | | #### **Transparent Cloud Computing Environment** Figure 3 Transparent computing that separates the user data, application, OS, and hardware in time and space – an ideal model for future Cloud platform construction #### Parallel and Distributed Programming | Table 1.7 Parallel and Distributed Programming Models and Tool Sets | | | | | |---|--|--|--|--| | Model | Description | Features | | | | MPI | A library of subprograms that can be called from C or FORTRAN to write parallel programs running on distributed computer systems [6,28,42] | Specify synchronous or asynchronous
point-to-point and collective
communication commands and I/O
operations in user programs for
message-passing execution | | | | MapReduce | A Web programming model for scalable data processing on large clusters over large data sets, or in Web search operations [16] | Map function generates a set of
intermediate key/value pairs; Reduce
function merges all intermediate values
with the same key | | | | Hadoop | A software library to write and run large
user applications on vast data sets in
business applications (http://hadoop
.apache.org/core) | A scalable, economical, efficient, and reliable tool for providing users with easy access of commercial clusters | | | #### **Grid Standards and Middleware:** Table 1.9 Grid Standards and Toolkits for scientific and Engineering Applications | Grid Standards | Major Grid Service
Functionalities | Key Features and Security
Infrastructure | |---------------------|---|---| | OGSA
Standard | Open Grid Service Architecture
offers common grid service
standards for general public use | Support heterogeneous distributed environment, bridging CA, multiple trusted intermediaries, dynamic policies, multiple security mechanisms, etc. | | Globus
Toolkits | Resource allocation, Globus security
infrastructure (GSI), and generic
security service API | Sign-in multi-site authentication with PKI, Kerberos,
SSL, Proxy, delegation, and GSS API for message
integrity and confidentiality | | IBM Grid
Toolbox | AIX and Linux grids built on top
of Globus Toolkit, autonomic
computing, Replica services | Using simple CA, granting access, grid service (ReGS), supporting Grid application for Java (GAF4J), GridMap in IntraGrid for security update. | #### FIGURE 1.26 Four operational layers of distributed computing systems. (Courtesy of Zomaya, Rivandi and Lee of the University of Sydney [33]) ### **Energy Efficiency:** $$\begin{cases} E = C_{eff} f v^2 t \\ f = K \frac{(v - v_t)^2}{v} \end{cases}$$ Figure 1.30 DVFS technique (right) original task (left) voltage-frequency scaled task (Courtesy of R.Ge, et al, "Performance Constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters", Proc. of ACM Supercomputing Conf., 2005 [18].) #### **System Attacks and Network Threads** #### Various system attacks and network threats to the cyberspace. #### **Four Reference Books:** - 1. K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud Computing: from Parallel Processing to the Internet of Things Morgan Kauffmann Publishers, 2011 - 2. R. Buyya, J. Broberg, and A. Goscinski (eds), Cloud Computing: Principles and Paradigms, ISBN-13: 978-0470887998, Wiley Press, USA, February 2011. - 3. T. Chou, *Introduction to Cloud Computing: Business and Technology,* Lecture Notes at Stanford University and at Tsinghua University, Active Book Press, 2010. - 4. T. Hey, Tansley and Tolle (Editors), The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, 2009.