-% COURSE TECHNOLOGY

1 &» CENGAGE Learning"

Connecting with Computer
Science, 2e

Chapter 14
Programming |

Objectives

* In this chapter you will:
— Learn what a program is and how it's developed

— Understand the difference between a low-level and
high-level language

— Be introduced to low-level languages, using assembly
language as an example

— Learn about program structure, including algorithms
and pseudocode

Connecting with Computer Science, 2e 2

Objectives (cont'd.)

* In this chapter you will (cont’'d.):
— Learn about variables and how they're used
— Explore the control structures used in programming

— Understand the terms used in object-oriented
programming

Connecting with Computer Science, 2e

Why You Need to Know About...
Programming

« Examples of programs in everyday functions:
— Cars, space shuttles, ATMs, and microwaves

* It is important to develop a quality programming
product

— People depend on it
* Programming is essential to future computing career

Connecting with Computer Science, 2e 4

What Is a Program?

* Program:

— Collection of statements or steps

« Solves a problem

« Converted into a language the computer understands
to perform tasks

 Algorithm:
— Logically ordered set of statements
« Used to solve a problem
* Interpreter:

— Translates program’s statements into a language the
computer understands

Connecting with Computer Science, 2e

What Is a Program? (cont’'d.)

« Compiler:
— Application reading all the program’s statements

« Converts them into computer language

« Produces an executable file running independently of
an interpreter

* Programs are developed to help perform tasks
— Communicate with users to meet their needs

« Causes of program failure:
— Piece of logical functionality left out of the program
— Contains logic errors in one or more statements

Connecting with Computer Science, 2e

| Speak Computer

* First step in programming
— Determine language to communicate with the
computer

— Computers only speak binary
« Many choices:
— Ada, Assembly, C, C++, C#
— COBOL, FORTRAN, Delphi (Pascal)
— Java and JavaScript
— Lisp, Perl, Smalltalk, Visual Basic

« Each has its own strengths and weaknesses

Connecting with Computer Science, 2e

| Speak Computer (cont’'d.)

* Low-level language:
— Uses binary code for instructions
* Machine language:
— Lowest-level programming language
« Consists of binary bit patterns
 Assembly language:

— One step up from machine language

» Assigns letter codes to each machine-language
instruction

Connecting with Computer Science, 2e

| Speak Computer (cont’'d.)

« Assembler:

— Program that reads assembly-language code and
converts it into machine language

* High-level language:

— Written in @ more natural language that humans can
read and understand

Connecting with Computer Science, 2e

| Speak Computer (cont’d.)

assembly language

machine language

low-level

languages

hardware

Figure 14-1, Different types of programming languages

Connecting with Computer Science, 2e

10

Low-Level Languages

 Few people code in machine language

« Assembly language:
— Simulates machine language
— Written with more English-like statements
— Advantages:

« Corresponds to one machine instruction

* Programs are usually smaller and run faster than
programs in higher-level languages

 Powerful

— Closely tied to the CPU type
« Assemblers written for every type of CPU

Connecting with Computer Science, 2e

11

Assembly-Language Statements

* Registers in a CPU

— Special memory locations for storing information
programs can use

— Registers: AX, BX, CX, and DX
« General-purpose registers (GPRs)

« Used mainly for arithmetic operations or accessing an
element in an array

e Consists of text instructions

— Converted one by one into machine (binary)
Instructions

» Disadvantage: hard to read and understand

Connecting with Computer Science, 2e

12

Assembly-Language Statements
(cont’'d.)

« Syntax:

— Rules for how a programming language’s statements
must be constructed

« mov: moves values around
— Example: move the value of 8 into the CX register

* MOV CX, 8

— Can move a value from memory to a register, from a
register to memory, from register to register

* mov dx, cCX

Connecting with Computer Science, 2e 13

Assembly-Language Statements
(cont’'d.)

« add: takes a value on the right and adds it to the
value on the left

— Example: storing value of 11 in DX register
* MOV CX, 3

e mov dx, 8
e add dx, cx

« inc: adds 1 to the register being used
— Example: add 1 to DX register to get 12

e Tnc dx

Connecting with Computer Science, 2e

14

Assembly-Language Statements
(cont’'d.)

« sub: tells the assembler to subtract one number
from another number
— Example: DX =DX - CX
« CX reqister still contains value 4
« DX register contains value 3
e mov cx, 4
e mov dx, 7/

e sub dx, cx

Connecting with Computer Science, 2e

15

Assembly-Language Statements
(cont’'d.)

« cmp: tells assembler to compare two values

— Result sets flag bits in the flags (FL) register

* If the result of the compare equals 0, zero (ZR) flag is
set to a binary 1, and the sign (SF) flag is setto 0

* |If the result of the compare is a negative number, ZR
flag bit is set to a binary 0, and the SF flag is set to 1

— Example: DX-CX =0, ZR flag is set to 1
e mov cx, 4
e mov dx, 7/

e cmp dx, cCX

Connecting with Computer Science, 2e

16

Assembly-Language Statements
(cont’'d.)

« jnz: tests value of ZR flag maintained by the
system

— If set to 1: jump somewhere else in the program

— Not set: assembler continues to process code on the
next line
— Example:
e mov cx, 4
e mov dx, 7/
e cmp dx, CX

e jnz stop

Connecting with Computer Science, 2e 17

High-Level Languages

« Writes programs independent of computer or CPU
* Advantages:

— Easier to write, read, and maintain

— Can accomplish much more with a single statement

— No one-to-one relationship between a statement and
a binary instruction

» Disadvantages:

— Programs generally run slower
* Must be compiled or interpreted

« Examples: Java, C++, Delphi, and C#

Connecting with Computer Science, 2e

18

High-Level Languages (cont'd.)

* Integrated development environment (IDE):
— Interface provided with software development
languages
* Incorporates all tools needed to write, compile, and

distribute programs
« Tools often include editor, compiler, graphical designer,
and more

Connecting with Computer Science, 2e 19

High-Level Languages (cont'd.)

File Edit View Wel

o -GS dd

+/ Standard

* Data

* Validation

+/ Navigation

+/ Login

+ WebParts

+/ AJAX Extensions
+' Reporting

+ HTML

General

There are no usable
controls in this group.
Drag an item onto this

text to add it to the

toolbox

Ready

Toolbe ~ 3 Xx

W GameStudy - Microsoft Visual Studio

bsite Build Debug
A9 -
XHTML 1.0 Transition: v

Register.aspx.cs

4 Design | O Split | (= Source 4|| <html>

Show output from:

| (5] jd S
Format Table Tools Test Window Help
& - b & load .
@ . :Style Application: Manual » Target Rule: (New Auto Class ".sty ~ [ab? [£h| - © (None v (Default Font v Defautv | B 7 U |A 2 | E-~
Default.aspy Register.aspx”| Start Page « X | Solution Explorer <0 x
Please fill in the information and then click the submit button. All fields where you - 2B EE 3@

type a value are required! P C\.\GameStudy\
Last Name:
First Name
City
Phone

Email

i) web.config

Major [Accounting -
I am 18 years of age or older and younger than 30
™ I understand that there is a possibility that playing violent video games may affect

my behavior and I accept responsibility for any side effects or consequences of
playing video games for an extended period of time

Please choose all that apply

I~ I would like to play Halo 3

™ I have played Halo before and understand that it is M rated for Mature

™ I would like to play Rock Band 2

I~ I have played Rock Band before and understand that it is T rated for Teen

JSolution Explorer (¥ Se

r> || <table> || <tr> || <td.style2> ’

Ln126 Col13 Ch

Figure 14-2, An IDE makes software development easier

Connecting with Computer Science, 2e

20

Structure of a Program

« Before writing a program in any language:
— Know how the program should work

— Know the language syntax

« Formal definition of how statements must be
constructed in the programming language

* Learning a programming language is similar to
learning a foreign language

Connecting with Computer Science, 2e 21

Algorithms

* Help describe the method used to solve a problem

— Break down each task in the plan into smaller
subtasks

« For many tasks, plan a series of logical steps to
accomplish them

— Provide a logical solution to a problem
— Consist of steps to follow to solve the problem

— Convert algorithm into programming statements by
representing the steps in some format

 Pseudocode is often used

Connecting with Computer Science, 2e

22

Pseudocode

« Readable description of an algorithm written in
human language

— Template describing what needs converting into
programming language syntax
— No formal rules for writing pseudocode

 |Information should explain the process to someone with
little experience in solving this type of problem

— Practice provides necessary skKill

Connecting with Computer Science, 2e 23

Pseudocode (cont'd.)

Celsius Fahrenheit
0C 32.0F
1C 33.8F
2C 35.6 F
3C 37.4F
4 C 39.2 F
5C 410F
6 C 428 F
7 C 446 F
8C 46.4 F
9C 48.2 F
10C 50.0 F
11 C 51.8F
12 C 53.6 F
13C 55.4 F
14 C 57.2 F
15 C 59.0 F
16 C 60.8 F
17 C 62.6 F
18 C 64.4F
19 C 66.2 F
20 C 68.0 F
21C 69.8 F
22 C 716 F
23 C 73.4F
24 C 75.2 F
225 (¢ 77.0 F
26 C 78.8 F
27 C 80.6 F
28 C 824 F
29 C 84.2 F
30 C 86.0 F

Figure 14-3, A temperature conversion chart

Connecting with Computer Science, 2e

Pseudocode (cont'd.)

 Start with the formulas needed in the algorithm:

— Fahrenheit to Celsius: Celsius temp = (5/9) *
(Fahrenheit temp — 32)

— Celsius to Fahrenheit: Fahrenheit temp = ((9/5) *
Celsius temp) + 32

« After formulas are proved correct, begin outlining
steps to write a program

— Input from the user
— Calculates the conversions
— Displays results to the user

Connecting with Computer Science, 2e 25

Pseudocode (cont'd.)

Menu:
Do you want to perform a conversion?
| f Yes then
Which conversion do you want to perform?
If Celsius to Fahrenheit then
Go to the Fahrenheit section
If Fahrenheit to Celsius then
Go to the Celsius section
Else If No then
Exit the program
Celsius:
Ask the user for a temperature in Fahrenheit
Apply the formula Celsius temp = (5/9) * (Fahrenheit
temp - 32)to the entered temperature
Display the result, sayving Fahrenheit temp ## converted to Celsius is XX
Return to the Menu section
Fahrenheit:
Ask the user for a temperature in Celsius
Apply the formula Fahrenheit temp = {{9/5) * Celsius temp) + 32 to the
entered temperature
Display the result, saying Celsius temp ## converted to Fahrenheit is XX
Return to the Menu section

Connecting with Computer Science, 2e

26

Choosing the Algorithm

« Determine best algorithm for the project
— Example: many ways to get to Disney World
* Fly
* Drive
 Hitchhike
« Walk

— Each has advantages and disadvantages

Connecting with Computer Science, 2e

27

Testing the Algorithm

« Test before typing program code

— Pretending to be an end user who is not
knowledgeable about the program

— Putting yourself in the user’s shoes helps predict
possible mistakes that users might make

Connecting with Computer Science, 2e

28

Syntax of a Programming Language

 After defining an algorithm and testing the logic
thoroughly, begin translating the algorithm
— May have many different ingredients:
« Variables
» Operators

e Control structures
« Objects

Connecting with Computer Science, 2e

29

Variables

* A name used to identify a certain location and value
iIn the computer's memory

— Program type determines variable types needed
— When a variable is defined, the data type is specified
* Advantages:
— Access memory location’s content
» Use its value in a program
— Easy way to access computer memory
* No need to know actual hardware address

* |dentifier: name of a variable

Connecting with Computer Science, 2e 30

|dentifiers and Naming Conventions

 ldentifier used to access memory contents
associated with a variable
 ltems to consider when deciding on an identifier:
— Name should describe data being stored
» Use variable-naming standards
— Can use more than one word for a variable’s identifier
« Example: Sun standard
— Use meaningful names

Connecting with Computer Science, 2e 31

Operators

« Symbols used to indicate data-manipulation
operations

— Manipulate data stored in variables
— Classified by data type

— One may work on numbers, and another on
characters (depending on definition)

Connecting with Computer Science, 2e

32

Math Operators

 Mathematical operators:
— Addition (+)
— Subtraction (-)
— Multiplication (*)
— Division (/)
— Modulus (%)
* Returns the remainder when performing division

Connecting with Computer Science, 2e

33

Math Operators (cont'd.)

operator description

+ addition

= subtraction

/ division

% modulus or remainder

* multiplication

+= addition and then assignment

—= subtraction and then assignment
= multiplication and then assignment

/= division and then assignment

o\°

= modulus and then assignment

Table 14-1, Standard mathematical operators

Connecting with Computer Science, 2e

Increment and Decrement Operators

 Most common programming instructions
— Examples: ++ and —-

— Example: increment operator takes value stored in the
iCount variable (5), adds 1 to it, stores the value 6 in
the iResult variable

e 1Count = 5
e 1Result = ++iCount

— Example: decrement operator takes value stored in
the iCount variable (5), subtracts 1 from it, stores
the value 4 in the 1Result variable

e 1Count = 5
e iResult = —--iCount

Connecting with Computer Science, 2e 35

Increment and Decrement Operators
(cont’'d.)

« Two types of increment and decrement operators

— Pre operator places ++ or —— symbol before the
variable name
* Preincrement; ++variable
 Predecrement: --variable

— Post operator places ++ or —— symbol after the
variable name

 Postincrement: variable++
» Postdecrement: variable--

Connecting with Computer Science, 2e 36

Relational Operators

« Main purpose is to compare values

operator

Table 14-2, Standard relational operators

Connecting with Computer Science, 2e

meaning

not equal to

less than

greater than

less than or equal to
greater than or equal to

equals

37

Logical Operators

 Main function is to build a truth table when
comparing expressions

— Expression: programming statement returning a value
when it's executed

« Usually use relational operators to compare variables

operator meaning

! not
&& and

| | or

Table 14-3, Standard logical operators

Connecting with Computer Science, 2e 38

Logical Operators (cont’'d.)

expression

(i1FirstNum
(1iThirdNum

(iFirstNum <

(1iThirdNum

(iFirstNum
(1ThirdNum

(iFirstNum !

(1ThirdNum

(iFirstNum
(1ThirdNum

(iFirstNum
(1iThirdNum

iSecondNum)

iFourthNum)

iSecondNum)

= iFourthNum)

iSecondNum)

iFourthNum)

iSecondNum)

= iFourthNum)

iSecondNum)
iFourthNum)

iSecondNum)
iFourthNum)

&&

&&

&&

&&

value

TandTequals T

Fand T equals F

F and F equals F

TandTequals T

TorTequalsT

ForTequalsT

Table 14-4, Boolean expressions

Connecting with Computer Science, 2e

explanation

(15>=10) and
20 >=15)

15 <= 10) and
20 >=15)

(

(

(

(15 ==10) and
(20 == 15)

(1

(

5!=10) and
20 1=15)

(15>=10) or
(20 >=15)

(15<=10) or
(20 >=15)

39

Precedence and Operators

* Precedence: order in which something is executed
« Symbols with a higher precedence executed before
those with a lower precedence
— Have a level of hierarchy
« Example: 2+ 3*4
— Output = 14 (not 20)

Connecting with Computer Science, 2e

40

Precedence and Operators (cont'd.)

(L= 1)

Figure 14-4, Order of relational and mathematical precedence

Connecting with Computer Science, 2e

Control Structures and Program Flow

* Control structure: instruction that dictates the order
In which statements in a program are executed

— “Spaghetti code” results if not followed
* Four control structure types:
— Invocation
— Top down
— Selection
— Repetition
« Control structure performs a specific task

Connecting with Computer Science, 2e

42

Invocation

 Act of calling something

— Copy code for a specific task (called “functionality”) to
a file and name it descriptively
— Write a new program

« “Call” (invoke) this piece of code without having to
rewrite it

« Saves time and money in program development

— After piece of code used:

« Control is passed back to the original program location
to continue

Connecting with Computer Science, 2e 43

Top Down (Also Called Sequence)

« Used when program statements are executed in a
series

— From top line to the bottom line one at a time

— First statement executed is the first line in the
program

— Each statement executed in sequential order
« Start with first line and continue until last line processed

e Most common structure

« Implemented by entering statements that do not call
other pieces of code

Connecting with Computer Science, 2e 44

Selection

« Make a choice (selection) depending on a value or
situation

— A standard part of most programs

Connecting with Computer Science, 2e

45

Repetition (Looping)

« Used when source code is to be repeated
* Referred to as “looping”

— Commonly used with databases or when you want an
action to be performed one or many times

« Standard repetition constructs
— for
— while
— do-while

Connecting with Computer Science, 2e 46

Ready, Set, Go!

* Building blocks:
— Variables, operators, and control structures

« Use Java to show examples of programming code:
— Download Java
— Choose an editor
— Enter the program in a text file
— Compile it from the command prompt
— Run the program

Connecting with Computer Science, 2e

47

Object-Oriented Programming

« Style of programming
* Involves representing items, things, and people as
objects instead of basing program logic on actions

— Object: includes qualities, what it does, and how it
responds or interacts with other objects

— Distinct features:

e Characteristics
 Work
« Responses

Connecting with Computer Science, 2e 48

Object-Oriented Programming (cont'd.)

=

Object: Alarm

Characteristics:
e Color
e Current time
* \Wake time
e Station tuned to
o ...etc

Work:
e Display current time
e Play radio station
e ...etc

Responses:
e When alarm time reached,
play alarm
* \When Snooze button pressed,
delay alarm for 5 minutes
o ...etc

Figure 14-6, An object has characteristics, work, and responses

Connecting with Computer Science, 2e

49

Object-Oriented Programming (cont'd.)

« Alarm object features:

— Characteristics

— Work

— Responses

High-level languages support OOP

OOQOP can represent part of the program as a self-
contained object

Advantages: reusability and maintainability

Connecting with Computer Science, 2e 50

How OOP Works

« Toy company division responsible for creating kung-
fu action figure
— Method one:
« Give every division employee piece of plastic
« Everyone carves the figure
— Method two:

« Create a mold (class or template in object-oriented
terminology)

* Figure can be mass-produced economically and
efficiently

Connecting with Computer Science, 2e 51

How OOP Works (cont’'d.)

« Making the mold
— Skeleton or the basic outline of a finished product
« Defines figure’s attributes
* Creating the figure

— Pour plastic into the mold

« Different colors of plastic in different parts of the mold
create attributes

« Mold defines what the plastic will be
* Putting the figure to work
— Figure can perform some work or action

Connecting with Computer Science, 2e

52

How OOP Works (cont’'d.)

 Putting the figure to work (cont'd.)
— Class: mold or template for creating the figure
— Object: the figure
— Instantiation: creation process

— Constructor: method used to instantiate an object in a
class

— Property or an attribute: characteristic of the figure
— Method: work performed by an object

— Event or event handler: object’s response to some
action taken by the end user or system

Connecting with Computer Science, 2e 53

How OOP Works (cont'd.)

Class ——
(mold)

Creation

v

)

Defines:
¢ Characteristics (properties or
attributes)
e Work (methods)
e Responses (events or event handlers)

Creating an object = instantiation

object of class kungFuFigure

Figure 14-7, Making a plastic figure shows OOP concepts in action

Connecting with Computer Science, 2e

54

How OOP Works (cont’'d.)

* |nheritance:

— Process of creating more specific classes based on
generic classes

« Base (or parent) class:

— General class from which other classes can be
created via inheritance

e Subclass:

— A more specific class, based on a parent class and
created via inheritance

Connecting with Computer Science, 2e

95

How OOP Works (cont'd.)

Employee

Figure 14-8, Inheritance promotes code reusability

Connecting with Computer Science, 2e 56

How OOP Works (cont’'d.)

* Encapsulation:

— Process of hiding an object’s operations from other
objects

* Polymorphism:

— An object’s capability to use the same expression to
denote different operations

Connecting with Computer Science, 2e

o7

Choosing a Programming Language

* Functions to consider:
— Functionality
— Vendor stability
— Popularity
— Job market
— Price
— Ease of learning
— Performance

« Download trial versions and try for yourself

Connecting with Computer Science, 2e

58

One Last Thought

* A program does whatever the programmer tells it to
do

— Blame program failure on the programmer, not the
computer

» Key word: responsibility

— Programs can help society or produce serious
ramifications

Connecting with Computer Science, 2e 59

Summary

« A program is a collection of statements or steps that
solve a problem

— There are many language choices available
 Machine languages
» Low-level languages
« Assembly languages
« High-level languages
 Integrated development environment (IDE)
— Provides programming tools

Connecting with Computer Science, 2e 60

Summary (cont'd.)

* Program structure
— Based on algorithms
— Represented with pseudocode
 Program language syntax
— Variables, operators, control structures, and objects
— Be aware of operator precedence
— Avoid spaghetti code

— Control structures
* Innovation, sequence, selection, and looping

Connecting with Computer Science, 2e

61

Summary (cont'd.)

« Start programming:
— Obtain software package
— Choose an editor
— Write the code
— Compile and fix errors
— Run program
 Distinct features of object-oriented programming:
— Characteristics, work, and responses
— Inheritance, encapsulation, and polymorphism

Connecting with Computer Science, 2e

62

