
Connecting with Computer
Science, 2e

Chapter 14
Programming I

Connecting with Computer Science, 2e 2

Objectives

•  In this chapter you will:
–  Learn what a program is and how it’s developed
–  Understand the difference between a low-level and

high-level language
–  Be introduced to low-level languages, using assembly

language as an example
–  Learn about program structure, including algorithms

and pseudocode

Connecting with Computer Science, 2e 3

Objectives (cont’d.)

•  In this chapter you will (cont’d.):
–  Learn about variables and how they’re used
–  Explore the control structures used in programming
–  Understand the terms used in object-oriented

programming

Why You Need to Know About...
Programming

•  Examples of programs in everyday functions:
–  Cars, space shuttles, ATMs, and microwaves

•  It is important to develop a quality programming
product
–  People depend on it

•  Programming is essential to future computing career

Connecting with Computer Science, 2e 4

What Is a Program?

•  Program:
–  Collection of statements or steps

•  Solves a problem
•  Converted into a language the computer understands

to perform tasks

•  Algorithm:
–  Logically ordered set of statements

•  Used to solve a problem
•  Interpreter:

–  Translates program’s statements into a language the
computer understands

Connecting with Computer Science, 2e 5

What Is a Program? (cont’d.)

•  Compiler:
–  Application reading all the program’s statements

•  Converts them into computer language
•  Produces an executable file running independently of

an interpreter

•  Programs are developed to help perform tasks
–  Communicate with users to meet their needs

•  Causes of program failure:
–  Piece of logical functionality left out of the program
–  Contains logic errors in one or more statements

Connecting with Computer Science, 2e 6

Connecting with Computer Science, 2e 7

I Speak Computer

•  First step in programming
–  Determine language to communicate with the

computer
–  Computers only speak binary

•  Many choices:
–  Ada, Assembly, C, C++, C#
–  COBOL, FORTRAN, Delphi (Pascal)
–  Java and JavaScript
–  Lisp, Perl, Smalltalk, Visual Basic

•  Each has its own strengths and weaknesses

I Speak Computer (cont’d.)

•  Low-level language:
–  Uses binary code for instructions

•  Machine language:
–  Lowest-level programming language

•  Consists of binary bit patterns
•  Assembly language:

–  One step up from machine language
•  Assigns letter codes to each machine-language

instruction

Connecting with Computer Science, 2e 8

Connecting with Computer Science, 2e 9

I Speak Computer (cont’d.)

•  Assembler:
–  Program that reads assembly-language code and

converts it into machine language
•  High-level language:

–  Written in a more natural language that humans can
read and understand

Connecting with Computer Science, 2e 10

Figure 14-1, Different types of programming languages

I Speak Computer (cont’d.)

Low-Level Languages

•  Few people code in machine language
•  Assembly language:

–  Simulates machine language
–  Written with more English-like statements
–  Advantages:

•  Corresponds to one machine instruction
•  Programs are usually smaller and run faster than

programs in higher-level languages
•  Powerful

–  Closely tied to the CPU type
•  Assemblers written for every type of CPU

Connecting with Computer Science, 2e 11

Assembly-Language Statements

•  Registers in a CPU
–  Special memory locations for storing information

programs can use
–  Registers: AX, BX, CX, and DX

•  General-purpose registers (GPRs)
•  Used mainly for arithmetic operations or accessing an

element in an array

•  Consists of text instructions
–  Converted one by one into machine (binary)

instructions
•  Disadvantage: hard to read and understand
Connecting with Computer Science, 2e 12

Assembly-Language Statements
(cont’d.)

•  Syntax:
–  Rules for how a programming language’s statements

must be constructed
•  mov: moves values around

–  Example: move the value of 8 into the CX register
• mov cx, 8

–  Can move a value from memory to a register, from a
register to memory, from register to register
• mov dx, cx

Connecting with Computer Science, 2e 13

Assembly-Language Statements
(cont’d.)

•  add: takes a value on the right and adds it to the
value on the left
–  Example: storing value of 11 in DX register

• mov cx, 3
• mov dx, 8
• add dx, cx

•  inc: adds 1 to the register being used
–  Example: add 1 to DX register to get 12

• inc dx

Connecting with Computer Science, 2e 14

Assembly-Language Statements
(cont’d.)

•  sub: tells the assembler to subtract one number
from another number
–  Example: DX = DX – CX

•  CX register still contains value 4
•  DX register contains value 3
• mov cx, 4
• mov dx, 7
• sub dx, cx

Connecting with Computer Science, 2e 15

Assembly-Language Statements
(cont’d.)

•  cmp: tells assembler to compare two values
–  Result sets flag bits in the flags (FL) register

•  If the result of the compare equals 0, zero (ZR) flag is
set to a binary 1, and the sign (SF) flag is set to 0

•  If the result of the compare is a negative number, ZR
flag bit is set to a binary 0, and the SF flag is set to 1

–  Example: DX – CX = 0, ZR flag is set to 1
• mov cx, 4
• mov dx, 7
• cmp dx, cx

Connecting with Computer Science, 2e 16

Assembly-Language Statements
(cont’d.)

•  jnz: tests value of ZR flag maintained by the
system
–  If set to 1: jump somewhere else in the program
–  Not set: assembler continues to process code on the

next line
–  Example:

• mov cx, 4
• mov dx, 7
• cmp dx, cx
• jnz stop

Connecting with Computer Science, 2e 17

High-Level Languages

•  Writes programs independent of computer or CPU
•  Advantages:

–  Easier to write, read, and maintain
–  Can accomplish much more with a single statement
–  No one-to-one relationship between a statement and

a binary instruction
•  Disadvantages:

–  Programs generally run slower
•  Must be compiled or interpreted

•  Examples: Java, C++, Delphi, and C#
Connecting with Computer Science, 2e 18

High-Level Languages (cont’d.)

•  Integrated development environment (IDE):
–  Interface provided with software development

languages
•  Incorporates all tools needed to write, compile, and

distribute programs
•  Tools often include editor, compiler, graphical designer,

and more

Connecting with Computer Science, 2e 19

Connecting with Computer Science, 2e 20

Figure 14-2, An IDE makes software development easier

High-Level Languages (cont’d.)

Structure of a Program

•  Before writing a program in any language:
–  Know how the program should work
–  Know the language syntax

•  Formal definition of how statements must be
constructed in the programming language

•  Learning a programming language is similar to
learning a foreign language

Connecting with Computer Science, 2e 21

Algorithms

•  Help describe the method used to solve a problem
–  Break down each task in the plan into smaller

subtasks
•  For many tasks, plan a series of logical steps to

accomplish them
–  Provide a logical solution to a problem
–  Consist of steps to follow to solve the problem
–  Convert algorithm into programming statements by

representing the steps in some format
•  Pseudocode is often used

Connecting with Computer Science, 2e 22

Connecting with Computer Science, 2e 23

Pseudocode

•  Readable description of an algorithm written in
human language
–  Template describing what needs converting into

programming language syntax
–  No formal rules for writing pseudocode

•  Information should explain the process to someone with
little experience in solving this type of problem

–  Practice provides necessary skill

Connecting with Computer Science, 2e 24

Figure 14-3, A temperature conversion chart

Pseudocode (cont’d.)

Connecting with Computer Science, 2e 25

Pseudocode (cont’d.)

•  Start with the formulas needed in the algorithm:
–  Fahrenheit to Celsius: Celsius temp = (5/9) *

(Fahrenheit temp – 32)
–  Celsius to Fahrenheit: Fahrenheit temp = ((9/5) *

Celsius temp) + 32
•  After formulas are proved correct, begin outlining

steps to write a program
–  Input from the user
–  Calculates the conversions
–  Displays results to the user

Connecting with Computer Science, 2e 26

Pseudocode (cont’d.)

Connecting with Computer Science, 2e 27

Choosing the Algorithm

•  Determine best algorithm for the project
–  Example: many ways to get to Disney World

•  Fly
•  Drive
•  Hitchhike
•  Walk

–  Each has advantages and disadvantages

Connecting with Computer Science, 2e 28

Testing the Algorithm

•  Test before typing program code
–  Pretending to be an end user who is not

knowledgeable about the program
–  Putting yourself in the user’s shoes helps predict

possible mistakes that users might make

Connecting with Computer Science, 2e 29

Syntax of a Programming Language

•  After defining an algorithm and testing the logic
thoroughly, begin translating the algorithm
–  May have many different ingredients:

•  Variables
•  Operators
•  Control structures
•  Objects

Variables

•  A name used to identify a certain location and value
in the computer’s memory
–  Program type determines variable types needed
–  When a variable is defined, the data type is specified

•  Advantages:
–  Access memory location’s content

•  Use its value in a program
–  Easy way to access computer memory

•  No need to know actual hardware address
•  Identifier: name of a variable

Connecting with Computer Science, 2e 30

Connecting with Computer Science, 2e 31

Identifiers and Naming Conventions

•  Identifier used to access memory contents
associated with a variable

•  Items to consider when deciding on an identifier:
–  Name should describe data being stored

•  Use variable-naming standards
–  Can use more than one word for a variable’s identifier

•  Example: Sun standard
–  Use meaningful names

Connecting with Computer Science, 2e 32

Operators

•  Symbols used to indicate data-manipulation
operations
–  Manipulate data stored in variables
–  Classified by data type
–  One may work on numbers, and another on

characters (depending on definition)

Connecting with Computer Science, 2e 33

Math Operators

•  Mathematical operators:
–  Addition (+)
–  Subtraction (–)
–  Multiplication (*)
–  Division (/)
–  Modulus (%)

•  Returns the remainder when performing division

Connecting with Computer Science, 2e 34

Table 14-1, Standard mathematical operators

Math Operators (cont’d.)

Connecting with Computer Science, 2e 35

Increment and Decrement Operators

•  Most common programming instructions
–  Examples: ++ and --
–  Example: increment operator takes value stored in the
iCount variable (5), adds 1 to it, stores the value 6 in
the iResult variable
• iCount = 5
• iResult = ++iCount

–  Example: decrement operator takes value stored in
the iCount variable (5), subtracts 1 from it, stores
the value 4 in the iResult variable
• iCount = 5
• iResult = --iCount

Increment and Decrement Operators
(cont’d.)

•  Two types of increment and decrement operators
–  Pre operator places ++ or -- symbol before the

variable name
•  Preincrement: ++variable
•  Predecrement: --variable

–  Post operator places ++ or -- symbol after the
variable name

•  Postincrement: variable++
•  Postdecrement: variable--

Connecting with Computer Science, 2e 36

Connecting with Computer Science, 2e 37

Relational Operators

•  Main purpose is to compare values

Table 14-2, Standard relational operators

Connecting with Computer Science, 2e 38

Logical Operators

•  Main function is to build a truth table when
comparing expressions
–  Expression: programming statement returning a value

when it’s executed
•  Usually use relational operators to compare variables

Table 14-3, Standard logical operators

Connecting with Computer Science, 2e 39

Table 14-4, Boolean expressions

Logical Operators (cont’d.)

Connecting with Computer Science, 2e 40

Precedence and Operators

•  Precedence: order in which something is executed
•  Symbols with a higher precedence executed before

those with a lower precedence
–  Have a level of hierarchy

•  Example: 2 + 3 * 4
–  Output = 14 (not 20)

Connecting with Computer Science, 2e 41

Figure 14-4, Order of relational and mathematical precedence

Precedence and Operators (cont’d.)

Connecting with Computer Science, 2e 42

Control Structures and Program Flow

•  Control structure: instruction that dictates the order
in which statements in a program are executed
–  “Spaghetti code” results if not followed

•  Four control structure types:
–  Invocation
–  Top down
–  Selection
–  Repetition

•  Control structure performs a specific task

Connecting with Computer Science, 2e 43

Invocation

•  Act of calling something
–  Copy code for a specific task (called “functionality”) to

a file and name it descriptively
–  Write a new program

•  “Call” (invoke) this piece of code without having to
rewrite it

•  Saves time and money in program development
–  After piece of code used:

•  Control is passed back to the original program location
to continue

Top Down (Also Called Sequence)

•  Used when program statements are executed in a
series
–  From top line to the bottom line one at a time
–  First statement executed is the first line in the

program
–  Each statement executed in sequential order

•  Start with first line and continue until last line processed

•  Most common structure
•  Implemented by entering statements that do not call

other pieces of code

Connecting with Computer Science, 2e 44

Connecting with Computer Science, 2e 45

Selection

•  Make a choice (selection) depending on a value or
situation
–  A standard part of most programs

Connecting with Computer Science, 2e 46

Repetition (Looping)

•  Used when source code is to be repeated
•  Referred to as “looping”

–  Commonly used with databases or when you want an
action to be performed one or many times

•  Standard repetition constructs
–  for
–  while
–  do-while

Ready, Set, Go!

•  Building blocks:
–  Variables, operators, and control structures

•  Use Java to show examples of programming code:
–  Download Java
–  Choose an editor
–  Enter the program in a text file
–  Compile it from the command prompt
–  Run the program

Connecting with Computer Science, 2e 47

Connecting with Computer Science, 2e 48

Object-Oriented Programming

•  Style of programming
•  Involves representing items, things, and people as

objects instead of basing program logic on actions
–  Object: includes qualities, what it does, and how it

responds or interacts with other objects
–  Distinct features:

•  Characteristics
•  Work
•  Responses

Connecting with Computer Science, 2e 49

Figure 14-6, An object has characteristics, work, and responses

Object-Oriented Programming (cont’d.)

Connecting with Computer Science, 2e 50

Object-Oriented Programming (cont’d.)

•  Alarm object features:
–  Characteristics
–  Work
–  Responses

•  High-level languages support OOP
•  OOP can represent part of the program as a self-

contained object
•  Advantages: reusability and maintainability

Connecting with Computer Science, 2e 51

How OOP Works

•  Toy company division responsible for creating kung-
fu action figure
–  Method one:

•  Give every division employee piece of plastic
•  Everyone carves the figure

–  Method two:
•  Create a mold (class or template in object-oriented

terminology)
•  Figure can be mass-produced economically and

efficiently

Connecting with Computer Science, 2e 52

How OOP Works (cont’d.)

•  Making the mold
–  Skeleton or the basic outline of a finished product

•  Defines figure’s attributes
•  Creating the figure

–  Pour plastic into the mold
•  Different colors of plastic in different parts of the mold

create attributes
•  Mold defines what the plastic will be

•  Putting the figure to work
–  Figure can perform some work or action

Connecting with Computer Science, 2e 53

How OOP Works (cont’d.)

•  Putting the figure to work (cont’d.)
–  Class: mold or template for creating the figure
–  Object: the figure
–  Instantiation: creation process
–  Constructor: method used to instantiate an object in a

class
–  Property or an attribute: characteristic of the figure
–  Method: work performed by an object
–  Event or event handler: object’s response to some

action taken by the end user or system

Connecting with Computer Science, 2e 54

Figure 14-7, Making a plastic figure shows OOP concepts in action

How OOP Works (cont’d.)

Connecting with Computer Science, 2e 55

How OOP Works (cont’d.)

•  Inheritance:
–  Process of creating more specific classes based on

generic classes
•  Base (or parent) class:

–  General class from which other classes can be
created via inheritance

•  Subclass:
–  A more specific class, based on a parent class and

created via inheritance

Connecting with Computer Science, 2e 56

Figure 14-8, Inheritance promotes code reusability

How OOP Works (cont’d.)

Connecting with Computer Science, 2e 57

How OOP Works (cont’d.)

•  Encapsulation:
–  Process of hiding an object’s operations from other

objects
•  Polymorphism:

–  An object’s capability to use the same expression to
denote different operations

Connecting with Computer Science, 2e 58

Choosing a Programming Language

•  Functions to consider:
–  Functionality
–  Vendor stability
–  Popularity
–  Job market
–  Price
–  Ease of learning
–  Performance

•  Download trial versions and try for yourself

Connecting with Computer Science, 2e 59

One Last Thought

•  A program does whatever the programmer tells it to
do
–  Blame program failure on the programmer, not the

computer
•  Key word: responsibility

–  Programs can help society or produce serious
ramifications

Connecting with Computer Science, 2e 60

Summary

•  A program is a collection of statements or steps that
solve a problem
–  There are many language choices available

•  Machine languages
•  Low-level languages
•  Assembly languages
•  High-level languages

•  Integrated development environment (IDE)
–  Provides programming tools

Connecting with Computer Science, 2e 61

Summary (cont’d.)

•  Program structure
–  Based on algorithms
–  Represented with pseudocode

•  Program language syntax
–  Variables, operators, control structures, and objects
–  Be aware of operator precedence
–  Avoid spaghetti code
–  Control structures

•  Innovation, sequence, selection, and looping

Connecting with Computer Science, 2e 62

Summary (cont’d.)

•  Start programming:
–  Obtain software package
–  Choose an editor
–  Write the code
–  Compile and fix errors
–  Run program

•  Distinct features of object-oriented programming:
–  Characteristics, work, and responses
–  Inheritance, encapsulation, and polymorphism

