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Abstract

We consider the design of survivable logical topologies over physical WDM ring
networks. The logical topology consists of the same set of nodes as the physi-
cal topology, and the links of the logical topology are lightpaths in the physical
topology. The logical topology is said to be survivable if the failure of any single
physical link does not disconnect the logical topology. In this paper, we consider
the following problem. Given a logical topology with lightpath end-nodes, route the
lightpaths to make the logical topology survivable if possible. Otherwise, determine
and embed the minimum number of additional lightpaths to achieve survivability.

1 Introduction

Optical networks employing Wavelength Division Multiplexing (WDM) and wavelength-
routing are capable of providing lightpaths to higher service layers. Lightpaths are optical
circuit-switched paths that have transmission rates of a few Gb/s. By the use of WDM,
multiple lightpaths may traverse the same optical fiber link, each one using a different
wavelength.

Survivability is a very important requirement for high-speed optical networks. There
has been a large amount of work that focuses on pre-allocating backup capacity so that
any failed lightpaths may be restored rapidly as soon as normal operation is disrupted in
the event of link break. The proposed techniques are classified as either link protection
or path protection, depending on whether the rerouting of lightpaths is done around the
failed link, or on an end-to-end basis. Protection at the optical layer is considered to be
fast, partly because of the proximity of the optical layer to the physical layer at which the
failure is first detected, and partly because of the coarse granularity at which restoration
is done (at the lightpath or fiber level).

When an electronic service layer is embedded over a WDM optical network, then it
may be the case that the electronic layer incorporates its own survivability functions,
thereby making the optical layer recovery redundant, and in the worst case, perhaps
conflicting. Furthermore, when a physical link fails, it may not be necessary for all the
affected lightpath traffic to be restored. Thus, there is a case to be made for recovery to
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be done solely at the electronic layer. If the electronic layer were the IP layer, then the
only requirement for the layer to be survivable is that it be connected.

Motivated by the above, we consider in this paper the embedding of an electronic
layer on a physical WDM network such that the electronic layer network is connected
when a single link fails. The connectivity at the electronic layer is represented by the
logical topology. The logical topology is a topology which has as its nodes the set of
electronic nodes. The edges of the logical topology correspond to the set of lightpaths
that are established over the physical topology.

As mentioned above, multiple lightpaths may be routed over the same physical link,
and therefore, it is possible for a single physical link failure to break more than one
edge on the logical topology. Since survivability at the logical topology depends on the
availability of multiple routes between nodes at the logical layer, it is clear that there
must be some amount of coordination between the two layers if survivability has to be
achieved at the logical layer. In this paper, we focus on the design of logical topologies
that are survivable. We define a logical topology to be survivable if the failure of any
single physical link does not disconnect the logical topology. Survivable logical topology
design not only involves the determination of the logical edges but on the embedding of
those edges on the physical topology, i.e., the routing of the lightpaths.

There has been some recent research in the survivable design of logical topologies.
In [?], the problem of embedding lightpaths such that the minimum number of source-
destination pairs are disconnected at the logical layer was considered, and some opti-
mization heuristics were presented. In [?], a similar problem was considered and some
conditions for the survivability of a logical topology were presented. In both of these
papers, the physical topology was assumed to be an arbitrary mesh. In this paper, we
consider a physical ring network. Ring networks are important because the prevalent
topology for SONET is the ring. As these networks are upgraded to WDM, it is likely
that the topology will be maintained for some time before growing into a mesh net-
work. Secondly, the simplicity of the topology enables us to take a deeper look into the
complexity of the problem.

In the next section, we formally state the problem we attempt to solve in this paper.
Some insight into the complexity of the problem is presented in Section ??7. We present
a heuristic algorithm based on shortest path routing in Section ?7 and obtain some
numerical results. Concluding remarks in Section 7?7 complete the paper.

2 Problem Formulation

Consider a logical topology shown Figure 1(a) corresponding to a connection request set
R = {(0,2),(2,4),(4,0),(1,3),(3,5),(5,1),(0,1),(2,5)} to be embedded over a WDM
ring network with six nodes. Figure 1(b-c) show the physical ring topology and two
different lightpaths assignments, in which the logical topology maintains its connectivity
in the presence of any single physical link failure when the lightpath setup is done using
the routes shown in (b), and it does not when the setup is done using the routes in (c)
and when link (0, 1) fails.

Consider another example shown in Figure 2, in which the logical topology in (a) has
an edge-cut of size two {e1, ea} (these two logical edges correspond to the two connection
requests (a,b) and (c,d) assuming nodes a,c,b, and d are located in the ring in this
sequence). Any route assignment of lightpaths corresponding to logical links (a, b) and
(¢, d) always share a physical link, and the logical topology becomes disconnected when



Figure 1: (a) A logical topology, (b) a survivable embedding, and (c) a non-survivable
embedding.

the shared physical link fails. The above two examples leads to the formulation of the
following optimization problem.

Figure 2:

e Survivable Logical Topology Design Problem (SLTDP): Given a physical WDM ring
network with n nodes (where the node set is denoted by V' = {0,---,n — 1}) and
a set of connection requests R = {(i,7) | ¢,7 € V'} (where for any two connections
(1,79), (7, 5") € R, (i,7) # (¢,7")), find a route for each lightpath (7, j) € R such that
the logical topology remains connected, if possible, after the failure of any single
physical link. Otherwise, determine and embed the minimum number of additional
lightpaths to make the logical topology survivable.

Note that when the given logical topology is not connected or has a cut-edge, there
is no route assignment that can make the logical topology survivable without having
additional lightpaths. Some logical topologies that have edge-cuts of size two, however,
have route assignments that make the logical topology survivable, while some do not as
shown in Figure 2. When the logical topology is completely connected (i.e., every node
is connected to every other node), it is always possible to find a survivable embedding



by establishing n lightpaths from ¢ to ¢ + 1 in the clockwise direction for 0 <7 <n —1
where n = 0. The remaining lightpaths may be established in an arbitrary manner.
An interesting question then is to determine in polynomial time whether there exists
an embedding of lightpaths when the given logical topology is k-edge connected for an
arbitrary k. In the following section, we seek for an answer to this question and provide
partial answers.

3 Problem Complexity

In this section, we first address the question that given an arbitrary integer k, is there
any k-edge connected logical topology for which no lightpath assignment can make the
logical topology survivable? We then consider a special routing algorithm, namely the
shortest path routing and show that if the minimum degree of the logical topology is at
least [2n/3] (i.e., each node is connected to at least to [2n/3] other nodes), shortest
path routing of the lightpaths always makes the logical topology survivable.

3.1 k-Edge Connected Logical Topologies

As discussed earlier, no lightpath assignment can achieve the survivability if the logi-
cal topology is 1-edge connected, and some 2-edge-connected logical topologies cannot
achieve survivability. In the following, we show examples of 3-edge and 4-edge connected
logical topologies that cannot achieve survivability.

Figure ?? shows a 4-edge connected logical topology and a ring network with the
corresponding nodes. First note that the lightpaths corresponding to logical edges (a1, az)
and (a3, as) must share at least one physical link regardless of their route assignments.
The ring network in Figure ?? shows the case when lightpaths are established from a; to
as and from a3 to a4 both in the counter-clockwise direction, and they share physical links
between a; and as. Now, consider the lightpath assignments for logical links (e;, e5) and
(es, e4). Four possible assignments are shown in Figure 7?7, in which any two lightpaths
corresponding to (e1,ez) and (es,eq) share at least one physical link, and the shared
physical links are lying between a; and a4s. Therefore, the failure of any physical link
shared by four lightpaths corresponding to (a1, as), (as, a4), (€1, €2), and (es, e4) will make
all these logical links failed, hence making the logical topology disconnected. (Note that
the edge-cut C; correspond to the four logical links.) Similar arguments can be applied
to show that the logical topology will become disconnected for any of the remaining three
possible route assignments for (a1, a2) and (a3, as) by deleting Cy, Cy, and C3 when the
shared physical link fails.

Figure ?? shows a 3-edge-connected logical topology and a ring network with the
corresponding nodes. One can verify by the similar agument used in the case for 4-edge
connected logical topologies that no lightpaths assignment can make the shown logical
topology survivable. The detailed discussion will appear in the full version of the paper.

3.2 Shortest Path Routing

Theorem 3.1 Given an arbitrary set of connection requests R where every node has to
be connected to at least [2n/3] other nodes, the logical topology remains connected in the
event of any single physical link failure if each lightpath is established using the shortest
path route.
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Proof: In the following, we assume that n is a multiple of six and prove the theorem.
When n is not a multiple of six, similar arguments can be applied to prove the theorem,
and we omit the details in this paper.

Let V.= {0,---,n — 1} be the set of nodes in the ring network, and assume the
lightpaths are assigned using the shortest path route. Suppose (0,n — 1) is the failed
physical link. Define L = {0,1,---,%2 —1} and R = {3, 5 +1,---,n — 1}. Let s; to be
the number of lightpaths (i.e., logical links) connecting node i that are not using link
(0,n — 1). We then observe the following:

o Bt ifi € L
"=1%-it+n-1 ifieR

Suppose the logical topology becomes disconnected after the failure of link (0,7 — 1),
and let C' denote the smallest component (i.e., a component with the minimum number
of nodes) connected via logical links after the failure of physical link (0,7 — 1). Clearly,
|C| < n/2, and assume that L N C # (). Let t denote the largest index in L N C. Let
t' denote the smallest index in RNC if RNC # 0, and t' is not defined if RN C = 0.
Assume without loss of generality that the distance from node 0 to ¢ is no less than the
distance from node n — 1 to t' (i.e., t > n — ¢’ — 1). In the following, we consider four
cases for the value of ¢ and show the contradiction to the existence of C' in each case.

Case 1: t <% — 1.
In this case, the distance in the clockwise from ¢ to ¢’ is larger than n/2, and C C L
(i.e., RNC =1.) Since ¢ is the largest index in L N C, it implies that |C| < ¢+ 1,
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hence, node t can only be connected to at most ¢ other nodes in C'. However,
by the definition of s;, node ¢ must be connected at least § + ¢ nodes all in C, a
contradiction.

Case 2: 1> 3.
By the definition of s;, node ¢ must be connected to at least § + ¢ (i.e., at least %)
nodes in C. However, |C| < n/2, a contradiction.

Case 3: ggtgg—z.
For any node i € C N R, we then have n —¢t —1 <4 < & +¢. (See Figure ?7 for
clarification when j = ¢.) This then implies that |C N R| < 2¢ — % 4 2, which is
|IC N R| < % — 2. By the definition of s;, node ¢ must be connected to at least
t + § nodes in C, where node ¢ can be connected to at most § —2 nodes in C N R.
Therefore, node ¢ must be connected to at least t + 2 nodes in C'N L, and this is

impossible since [C N L| <t + 1.

Case 4:t =% — 1.
Sincen —t —1<4 < g+t forany nodei € CNR, |CNR| <% Again, by the
definition of s;, node ¢ must be connected to at least ¢ + & nodes in C. Therefore,
node ¢ (i.e., node ¥ — 1) must be connected to all of the § nodes in C'N R and
all of nodes in {0,1,---,%2 — 2}. Consequently, we have C = {0,1,---,% — 1}
{2, 2 4+ 1,---,2 — 1} (ie., |C| = 2). Clearly, any node in C can only be
connected to nodes in C', and consider node j = 2?" which is in C' N R. Again, by
the definition of s;, node j must be connected to at least 7 — 1 nodes implying
that node j must be connected to all nodes (except j itself) in C. However, this is
impossible since node 0, for example, cannot be connected to node j without using

link (0,n — 1) since the shortest route must be applied.

This completes the proof of the theorem. |

The result in Theorem ?? shows that the shortest path routing guarantees the logical
topology’s survivability if its minimum degree (i.e., the minimum number of nodes that
each node is connected to) is at least [2n/3]. On the other hand, if the minimum degree
is less than |n/2], the shortest path routing does not always provide the survivability as
can be seen in the following example.

Let V.= {0,---,n — 1} be the set of nodes in the ring network with n being an even
number. Define V, = {2p |0 <p<n/2—-1}and V,={2p+1 |0 <p <n/2-1}.
Consider a connection request set R = R.UR,U{(0,n—1)}, where R, = {(i,7) | ,j € V.}
and R, = {(4,7) | i, € V,}, and assume that each lightpath is established using the
shortest path routing. From this example, we note the following: (i) the logical topology
corresponding to R is connected, (ii) every node in V, (and V, respectively) is connected
to each other; hence, the minimum degree is at least n/2 — 1, and (iii) when physical link
(0,n — 1) fails, the nodes in V, are completely disconnected from the nodes in V,. The
discussion for this example is illustrated in Figure ?7.

From this example and the result of Theorem 7?7, we observe that the shortest path
routing is simple, yet providing the logical topology’s survivability when each node has
a rich connection. But the survivability is not guaranteed when the minimum degree is
less than n/2 — 1 and when the shortest path routing is applied. In fact, the result in
this example can be extended by adding more lightpaths between any two nodes (i, )
for i € V, and j € V, using physical link (0,n — 1) if it is the shortest path between i
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and j such that if shortest-path routing is used to embed a logical topology, then the
logical topology may not be survivable even if it is (n/2 — 1)-edge connected. In the
next section, we will look into the shortest path routing more closely and show some
interesting numerical results.

4 Numerical Results

In this section, we present some numerical results obtained by a heuristic algorithm
developed based on the shortest path routing. Our heuristic algorithm is outlined in the
following.

Given a set of connection requests R and a ring network with n nodes, each lightpath is
established using the shortest path routing. We then compute the number of components
of the logical topology after the failure of each physical link. If the logical topology
remains connected after the failure of any physical link, then we do not need to add any
lightpath. Otherwise, let (m,m + 1) be the link whose failure disconnects the logical
topology and creates the largest number of components. Let Ci,---,Cy, be the k,,
components that result from the failure of (m,m + 1). We then choose arbitrary nodes
u € Cy,, and v € Cy,, 1. If no lightpath exists between u and v, we establish a lightpath
between v and v without using link (m, m+1). (Note that this newly established lightpath
may not be the shortest path between the two nodes.) If a lightpath between u and v
already exists, we choose another arbitrary node w such that no lightpath between u and
w and between v and w exist, and establish two lightpaths between u and w and between
v and w, both without using link (m,m + 1). Upon completion of this process, the
number of components of this new logical topology after the failure of (m,m + 1) is now
decreased at least by one. We recompute the number of components by considering the
failure of each link, and repeat the above procedure until the resulting logical topology
becomes survivable.

We report simulation results for three different ring sizes: n = 100, 200 and 300. For
each network size, the connection request set R is created using the uniform distribution
of probability p that a logical link exists between pairs of nodes. For each p and n, two
sets of 1000 logical topologies are generated. The first set is obtained by generating 1000
random logical topologies (i.e., 1000 random connection request sets) where some logical
topologies may not be connected or may be only 1-edge connected. The second set is
obtained by generating 1000 random logical topologies which are all 2-edge connected.



For each p, n, and each set of 1000 logical topologies, our heuristic algorithm is applied,
and the average number of additional logical links are computed. The results are shown
in Figures 77-77.
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5 Concluding Remarks

In this paper, we addressed the issue of designing and embedding survivable logical
topologies in WDM optical rings. Specifically, we considered the problem of maintain-
ing the connectivity of a logical topology even when a single physical link fails, using
minimum extra lightpaths.
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We first presented some examples that show the complexity of the problem. In par-
ticular, we showed that for 2-edge, 3-edge, and 4-edge-connected logical topologies, there
exist a logical topology which is not survivable under a single link failure, no matter how
the topology is embedded over the physical topology, i.e., no matter how the lightpaths
are routed.

We then showed that if shortest-path routing is used to embed a logical topology, then
the logical topology may not be survivable even if it is (n/2 — 1)-edge connected, where
n is the number of nodes in the ring. Correspondingly, we showed that if the logical
topology is rich enough so that the minimum degree of any node is at least [2n/3],
then shortest-path routing of the lightpaths guarantees the survivability of the logical
topology. Finally, we presented a simple heuristic to solve the survivable logical design
problem based on shortest-path routing and presented some numerical results. These
results indicate that the heuristic is almost optimal.

Future work may concentrate on sharpening the bounds presented in this paper. The
complexity of the problem in other physical topologies is another possible topic for future
investigation.



