Final Exam

ITEC 120 – Spring 2007

(modified)

Name: __
(1 pt)
Declare a variable named grades to be an array of letter-grades. Each letter-grade is a String with a single letter “A” – “F”. Do not initialize the variable grades.

(1 pt)
Initialize the variable grades to hold 4 letter-grades.

(1 pt)
Store the following letter-grades in the variable grades: B, A, B, C.

(5 pts) Write one loop that counts the number of As and the number of Bs in the variable grades. At the end of your loop you will have two local variables; one with the number of As and the other with the number of Bs.

	

(3 pts) What are the three parts of a loop? Briefly describe what each part does.

(3 pts) Explain the three components of a For Each loop below.

 For (_____________________ __________________ : ________________) { }

(3 pts) Rewrite the following loop as a For Each loop.

for (int i = 0; i < grades.length; i++) {

 cnt[gradePoints[i]] += 1;

}

	for () {

 cnt[gradePoints[i]] += 1;
}

(3 pts) Rewrite the following loop as a While loop.

int m = 0;

for (j = 1; j < cnt.length; j++) {

 if (cnt[j] > cnt[m]) {

 m = j;

}

	while () {

 }

}

 (5 pts) Circle True or False

T / F:
Fields may not be accessed in a static method.

T / F:

The variable this may be accessed from any method.

T / F:
Public fields may only be accessed by methods defined in the same class.

T / F:
Static fields may only be accessed in a public method.

T / F:

Private methods may only be accessed within the class that defines the method.
(2 pts) What are the primary differences between an array and a linked list?

(1 pt) A class that is never instantiated is a(n)

· Subclass

· Super class

· Inner class

· Abstract class

· Inherited class

(1 pt) An object’s state is represented by the object’s
· Fields

· Fields and methods

· Public methods

· Private methods

(1 pt) An object’s interface refers to all of the object’s:

· Fields

· Fields and methods

· Public methods

· Private methods
(1 pt) Polymorphism refers to functions or methods with

· Multiple meanings

· Multiple forms

· Multiple names

· Multiple signatures

(1 pt) Overloading refers to functions, methods, and operators with

· Multiple meanings

· Multiple forms

· Multiple names

· Multiple signatures

The following problems will create three classes: Person, Student, and Dorm.

· Follow instructions carefully and read all of the function comments carefully. Your code, variables, and parameters MUST match the given comments.

· Include public, private, and static where applicable.

(3 pts) Write the constructor for class Person.

(2 pt) Fill in the blanks in the declaration of class Student to make Student a subclass of Person.
(5 pts) Create the five fields for class Student based on the given comments. Create constants where appropriate and use public, private, and static where appropriate.
(6 pts) For the fields in class Student, explain why you made the fields public or private and static or non-static.

(1 pt) The variable gradePoints contains one grade point for every course that a student has completed. Should gradePoints be implemented as a linked list or an array? Why?

(3 pts) Write the constructor for class Student.

(1 pt) What is the purpose of a constructor?

(1 pt) What method should be called on the first line of the constructor for a subclass?
(5 pts) Write a function computeGPA() that returns a student’s Grade Point Average.

(7 pts) Use a Scanner to write a function courseStringToList() that converts a String of courses to an array of courses. This function takes two parameters:

· The number of courses in the list

· A String containing each course separated by a space

You may use the following Scanner methods:

· boolean hasNext() – returns true if this scanner has another token in its input

· String next() – finds and returns the next complete token from this scanner

· int nextInt() – scans the next token of the input as an int
(5 pts) Write a function isEnrolled() that determines if a student is taking the given course. (Hint: call courseStringToList() to convert the student’s courses to a list.)

(1 pt) We have studied many types of functions including constructors, getters, setters, and wrapper functions. What type of function is isEnrolled()?
Create a class Dorm that represents a dormitory with twenty double-occupancy rooms.

(2 pts) Create two fields:

· The name of the dorm

· An array of 40 students living in the dorm

(3 pts) Write the getStudents() getter method.

(6 pts) Write a function computeAverageGPA() that computes the average GPA of all students living in the dorm.

(8 pts) Write a function generateDeansList() that returns a list of students living in the dorm with a GPA greater than or equal to the given GPA.
Extra Credit

(3 pts) Write a function numCoursesInCommon() that counts the number of courses two students have in common. The function will be defined in class Student. (Hint: call isEnrolled() to determine if a student is taking a course. Use public, private, and static where applicable.
(7 pts) Overload the function numCoursesInCommon(). This version takes two students as parameters and returns the number of courses the two students have in common. However, this version may not call any other functions. Use public, private, and static where applicable.

public abstract class Person {

 private int age;

 private String name;

 public int getAge() {return this.age;}

 public String getName() {return this.name;}

	 /**

 * Constructor that creates a Person.

 * @param _age The age of this person.

 * @param _name The name of this person.

 */

}

	import java.util.*;

public class Student _________________ _____________________ {

 // This student's numeric grades (A = 4.0, B = 3.0, C = 2.0, D = 1.0)

 // List of courses this student is currently taking (ITEC_120, ITEC_110)

 // Minimum GPA for good standing

 // Credit hours required for a BS degree

 // This student's rank (Freshman, Sophomore, Junior, Senior)

	 /**

 * Constructor that creates a Student.

 * @param _age The age of this student.

 * @param _name The name of this student.

 * @param _rank This student's rank (Freshman, Sophomore, Junior, Senior).

 */

	 /**

 * computeGPA() -- Computes this student's GPA

 * @return This student's Grade Point Average.

 */

	 /**

 * courseStringToList() -- Converts a string of courses to a list.

 * @param numClasses The number of classes this student is taking.

 * @param courseStr A string of classes that this student is taking.

 * @return An array of courses

 * courseStringToList(2, "ITEC_120 ITEC_110") = [ITEC_120, ITEC_110]

 */

	 /**

 * isEnrolled() -- determines if this student is taking the given course

 * @param course The name of a course, such as “ITEC_120”

 * @return Answers if this student is taking the given course

 */

}

import java.util.*;

public class Dorm {

	 // Name of this dorm.

 // List of 40 students living in this dorm.

	 /**

 * getStudents()

 * @return The list of students in this dorm.

 */

	 /**

 * computeAverageGPA()

 * @return The average GPA of all students living in this dorm

 */

	 /**

 * generateDeansList()

 * @param minGPA The minimum inclusive GPA to be on the Dean's list

 * @return A list of students on the Dean's list

 */

	 /**

 * numCoursesInCommon() -- counts the number of common courses

 * @param other A student to compare with

 * @return The number of courses this student has in common with other.

 */

	 /**

 * numCoursesInCommon() -- counts the number of common courses

 * @param std1 The first student

 * @param std2 The second student

 * @return The number of courses two students have in common.

 */

