![]() |
![]() |
|
Review a hw prob (proof by contra-positive: 1/x rational.). Set: - def'n. No order, no repetition. Define explicitly, or as a rule (set-builder notation) - common sets: φ, N, Z, Q, R, C; B, Sigma, Sigma* intervals of real numbers: [a,b] (a,b) eg [0,1]; (0,Infinity); [0,1). - def'n 'subset'; equals. Proof A = B iff A⊆B, B⊆A. - constructors (w/ Venn Diagrams) union, intersect, complement, set-diff (R-Q; N-{0}) Examples: P=primes, O=odd, E=even. E ∪ O = ?? E ∩ O = ?? P ∩ E = ? P ∪ O = ? ...to be continued...
©2008, Ian Barland, Radford University Last modified 2008.Oct.10 (Fri) |
Please mail any suggestions (incl. typos, broken links) to ibarland ![]() |
![]() |