Welcome to DrRacket, version 5.3.6 [3m].
Language: racket; memory limit: 1024 MB.

A C program, and how information is placed on the run-time stack at three moments
in time.

The purpose is to help understand how the run-time stack holds the current
function's local variables (incl. its parameters), as well as one piece of
important book-keeping: what program-instruction to resume at, when the current
helper function finishes.

This is important, since it explains how an attacker, if they can get a stack
overflow to both (a) place malicious code onto the stack, *andx (b) overwrite the
return-instruction-pointer so that the program 'returns' to that malicious code
rather than the real return-site, then the attacker has achieved "running of
arbitrary code".

Notes:
- "%rip" is a local system variable for "return instruction pointer" —- where to
resume the program at,

when finishing the current helper function.
- "%rsp" is a local system variable for "return stack pointer" —— where to adjust
the top-of-stack to,

when finishing the current helper function.

"The sample C program:"
#include <stdio.h>

int main() {
printf("This program verifies whether 5 to the 300th power is bigger than 0.\n");

int x = 5;
int y = 300;
char report[5] = "Yes!";

if (power(x,y) >= 0) {
printf("%s\n", report);

}
else {
printf("It's not! Hmmm; overflow?\n");
}
return 1; // indicate an error, to the shell / caller.

// Return a”b.

//

int power(int a, int b) {
int product = 1;

while (b!=0) {
product = multiply(product, a);
b——;

¥

return product;

by

// Return xxy.

//

int multiply (int x, int y) {
return xxy;

Iy
"In main:"
{4808 "Y' report[@]
{4889 ‘e' w[1]
@4 88A ‘s’ w[2]
{4 888 " w[3]

=
@4 88c v w[4] ™
@4 800 300 y €
[@488E 5 X
[@4068F [shell:?] %rip
@4018 +17 %rsp
"calling power from main:"
[@4aa3 1 product
@404 300 b _
[@4885 5 a %
@aees | [main:4:17] | %rip e
[@aea7 +9 &rsp
@888 "' report[8]
[@40889 ‘e! -[1]
@4 884 's' ~[2]
[@4288 e ~[3]

=
[@488C v ~[4] =
@4800 308 y :
[@488E 5 X
{4 B8F [shell:?] &rip
a1 +77 &rsp

"calling multiply from power from main:"

@3FFF
4800
4801
4802
40803
@4004
4885
4886
4887
4808
4889
4804
4808
4 88c
@4 800
@4 B0E
@4 B0F
4810

>

5

1

[power:3:12]

+5

:17]

38

[shell:?]

+77

¥
X

&rip

multiply

&rsp
product
b

a

power

&rip

&rsp

report[@]
~[1]
~[2]
~[3]
~[4]

&rip
&rsp

main

