Welcome to DrRacket, version 5.3.6 [3m].
Language: racket; memory limit: 1024 MB.

A C program, and how information is placed on the run-time stack at three moments
in time.

The purpose is to help understand how the run-time stack holds the current
function's local variables (incl. its parameters), as well as one piece of
important book-keeping: what program-instruction to resume at, when the current
helper function finishes.

This is important, since it explains how an attacker, if they can get a stack
overflow to both (a) place malicious code onto the stack, *andx (b) overwrite the
return-instruction-pointer so that the program 'returns' to that malicious code
rather than the real return-site, then the attacker has achieved "running of
arbitrary code".

Notes:
- "%rip" is a local system variable for "return instruction pointer" —- where to
resume the program at,

when finishing the current helper function.
- "%rsp" is a local system variable for "return stack pointer" —— where to adjust
the top-of-stack to,

when finishing the current helper function.

"The sample C program:"
#include <stdio.h>

int main() {
printf("This program verifies whether 5 to the 300th power is bigger than 0.\n");

int x = 5;
int y = 300;
char report[5] = "Yes!";

if (power(x,y) >= 0) {
printf("%s\n", report);

}
else {
printf( "It's not! Hmmm; overflow?\n" );
}
return 1; // indicate an error, to the shell / caller.

// Return a”b.

//

int power(int a, int b) {
int product = 1;



while (b!=0) {
product = multiply(product, a);
b——;

¥

return product;
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// Return xxy.

//

int multiply (int x, int y) {
return xxy;
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"In main:"
{4808 "Y' report[@]
{4889 ‘e' w[1]
@4 88A ‘s’ w[2]
{4 888 " w[3]

=
@4 88c v w[4] ™
@4 800 300 y €
[@488E 5 X
[@4068F [shell:?] %rip
@4018 +17 %rsp
"calling power from main:"
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"calling multiply from power from main:"
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