Three useful categories

Learning a programming language involves:
Syntax: The grammar rules defining a program fragment.
Semantics: The meaning of various programming fragments.

Pragmatics: How to effectively use language features, libraries, IDEs,

All three of these are important in how easy it is to
easily write high-quality software.

For all categories, consider the principle of least
surprise.



Some vocabulary

Do not confuse the following four!
* value:

* variable:

* type:

* expression:



Some vocabulary

Do not confuse the following four!
* value:a datum — the fundamental piece of information that can

be represented in the program
E.e. 37 or "hi". Values can be passed to functions,

returned, stored in variables.
* variable:

* type:

* expression:



Some vocabulary

Do not confuse the following four!
* value:a datum — the fundamental piece of information that can

be represented in the program
E.e. 37 or "hi". Values can be passed to functions,
returned, stored in variables.
* variable: an identifer which, at run time, evaluates to some
particular value.

* type:

* expression:



Some vocabulary

Do not confuse the following four!
* value:a datum — the fundamental piece of information that can
be represented in the program

E.e. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

* variable: an identifer which, at run time, evaluates to some

particular value.

* type:a set of values

E.g.Java’s short ={-32768,...,-1,0,+1,+2, ..., +32767}.

* expression:



Some vocabulary

Do not confuse the following four!
* value:a datum — the fundamental piece of information that can

be represented in the program
E.e. 37 or "hi". Values can be passed to functions,
returned, stored in variables.
* variable: an identifer which, at run time, evaluates to some
particular value.
* type:a set of values
E.g.Java’s short ={-32768,...,-1,0,+1,+2, ..., +32767}.
* expression: a piece of syntax which evaluates to some particular

value.
E.e. 3+4*5 or sqrt(16).



Some vocabulary (cont.)

* literal: a piece of syntax which evaluates immediately to a
particular value.
E.e.Java 37 or 045 are both literals representing the
value 37, which is of type int. And 37., 37d,

37e0 are each literal double s.

(We will often conflate a literal with the value it
represents, and only say “literal” when we're emphasizing
that we're dealing with syntax.)



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay'".substring (3) .equals ("hay")

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay'".substring(3) == "hay"

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

10



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

11



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be

processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the

the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay")

Morever: string-literals with + are computed at

compile-time.

(*) This optimization is only safe because Java strings are immutable.

12



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay") // true (!)

Morever: string-literals with + are computed at

compile-time.

(*) This optimization is only safe because Java strings are immutable.

13



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay") // true (!)

Morever: string-literals with + are computed at

compile-time.

"Cat" + "hay" — " Cathay"

(*) This optimization is only safe because Java strings are immutable.

14



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay") // true (!)

Morever: string-literals with + are computed at

compile-time.

"Cat" + "hay" == "Cathay" // true (!)

(*) This optimization is only safe because Java strings are immutable.

15



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay") // true (!)

Morever: string-literals with + are computed at

compile-time.

"Cat" + "hay" == "Cathay" // true (!)
"Cat" .concat("hay'") == "Cathay"

(*) This optimization is only safe because Java strings are immutable.

16



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned’: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" .substring(3) .equals("hay") // true
"Cathay".substring(3) == "hay" // false
"Cathay" == "Cathay") // true (!)
Morever: string-literals with + are computed at
compile-time.

"Cat" + "hay" == "Cathay" // true (!)
"Cat".concat ("hay") == "Cathay" // false

(*) This optimization is only safe because Java strings are immutable.

17



typing: when!

statically-typed: At compile-time, the types of all declared names are
known.

Can be provided by programmer and checked by
type-system, or inferred by the language (ML, Haskell).

(C# allows simple var n = 5; and infers n € int).
dynamically-typed: Language knows the type of every value.

But a variable might hold values of different types, over
its lifetime. php, javascript, racket. Each value may include
some extra bits, indicating its type.

18



typing: other approaches

duck typing: Care about an object having a field/method, not any
inheritance.

E.g. javascript
untyped:
E.g. assembly

type-safe: Any type error is caught (either dynamically or
statically).

Note that C is not type-safe, due to casting. Java’s casting
is type-safe (since a bad cast will fail at run-time).

19



typing: strong/weak/non

These terms are often used in different ways:

strongly typed: no/few implicit type conversions,
or statically typed

weakly typed: many implicit type conversions,
or dynamically typed

Consider Java Math.sqrt (16), and Java vs php
"50" + 60.

20



Compiling vs Interpreting

* A compiler is a function

compile : source-code — machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

* An interpreter is a function

eval : expr — value
which evaluates an expression, producing a resulting
value.

21



Compiling vs Interpreting (cont.)

* Running interpreted code, you are running the
interpreter, which is looking at the source-expression
as if it were data.

* Running compiled code, you are running the program
directly.

* Compiled code: faster, but platform-specific.

The distinction is practical, but not fundamental: You can
even claim that CPUs are simply interpreters: they read

compiled-code as data (from memory), and update their
internal state accordingly.

* A compromise: compile to byte code (o, javascript),
and run an interpreter for that byte code. A
speed/platform-dependence trade-off.

22



