
Three useful categories

Learning a programming language involves:

Syntax: The grammar rules defning a program (or fragment).

Semantics: The meaning of various programming fragments.

Pragmatics: How to effectively use language features, libs, IDEs, …

All three of these are important in how easy it is to
easily write high-quality software.

For all categories, consider: Principle of least surprise.

1

Some vocabulary

Do not confuse the following four!
• value:

• variable:

• type:

• expression:

2

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable:

• type:

• expression:

3

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type:

• expression:

4

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type: a set of values
E.g. Java’s short = {-32768,..., -1,0,+1,+2, ..., +32767}.

• expression:

5

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type: a set of values
E.g. Java’s short = {-32768,..., -1,0,+1,+2, ..., +32767}.

• expression: a piece of syntax which evaluates to some particular
value.

E.g. 3+4*5 or sqrt(16).

6

Some vocabulary (cont.)

• literal: a value which literally appears in the source-code.
E.g. Java 37 or 045 are both literals representing the
value 37, which is of type int. And 37., 37d,
37e0 are each literal double s. (But pi is not, nor
n+m.)

(We will often confate a literal with the value it
represents, and only say “literal” when we’re emphasizing
that we’re dealing with syntax.)

7

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3).equals("hay")

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

8

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

9

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3) == "hay"
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

1�

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

11

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

12

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

13

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay"

(*) This optimization is only safe because Java strings are immutable.

14

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false

(*) This optimization is only safe because Java strings are immutable.

15

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false
"Cat" + "hay" == "Cathay"

(*) This optimization is only safe because Java strings are immutable.

16

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false
"Cat" + "hay" == "Cathay" // true (!)

(*) This optimization is only safe because Java strings are immutable.

17

typing: when?

statically-typed: At compile-time, the types of all declared names are
known.

Can be provided by programmer and checked by
type-system, or inferred by the language (ML, Haskell).

(C# allows simple var n = 5; and infers n ∈ int).

dynamically-typed: Language knows the type of every value.

But a variable might hold values of different types, over
its lifetime. php, javascript, racket. Each value may include
some extra bits, indicating its type.

18

typing: other approaches

duck typing: Care about an object having a feld/method, not any
inheritance.

E.g. javascript

untyped:

E.g. assembly

type-safe: Any type error is caught (either dynamically or
statically).

Note that C is not type-safe, due to casting. Java’s casting
 is type-safe(*) — a bad cast will fail at run-time.

(*) Actually, Java generics + casting can bypass
type-safety, due to type-erasure. :-(

19

typing: strong/weak/non

These terms are often used in different ways:

strongly typed: no/few implicit type conversions,
or statically typed

weakly typed / untyped: many implicit type conversions,
or dynamically typed

Consider Java Math.sqrt(16), and Java vs php
20+30+"40".

Cf. SQL (each column strongly-typed) vs SQLite (may
attempt type-conversion, but will allow storing any type
in a column).

Implicit conversions are one way "scripting" languages
are more lightweight.

2�

Compiling vs Interpreting

• A compiler is a function

 compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a resulting
value.

21

Compiling vs Interpreting

• A compiler is a function

 compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

• A cross-compiler is source-code → source-code, so
“compile Ada into javascript” is sensible (and
machine-code is just one particular target-language).
“Correctness”: the two programs have identical
semantics.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a resulting
value.

22

Compiling vs Interpreting (cont.)

• Interpreted code: CPU runs the op-codes interpreter;
it looks at the source-expression as data, updating
internal state appropriately.

• Compiled code: CPU runs the op-codes of the desired
program directly.

• Compiled code: probably faster, but platform-specifc.

The distinction is practical, but not fundamental. You can
even view CPUs as interpreters for for compiled-code
(!) — they look at the op-codes as data, updating the
CPU’s state appropriately.

• A compromise: compile to byte code; then interpret
that byte code. Trades off speed vs.
platform-dependence. (See also: JIT.)

23

