
Three useful categories

Learning a programming language involves:

Syntax: The grammar rules defning a program (or fragment).

Semantics: The meaning of various programming fragments.

Pragmatics: How to  effectively use language features, libs, IDEs, …

All three of these are important in how easy it is to
easily write high-quality software.

For all categories, consider: Principle of least surprise.
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Some vocabulary

Do not confuse the following four!
• value: 

• variable: 

• type: 

• expression: 
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Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g.  37 or  "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type: a set of values
E.g. Java’s  short = {-32768,..., -1,0,+1,+2, ..., +32767}.

• expression: a piece of syntax which evaluates to some particular
value.

E.g.  3+4*5 or  sqrt(16).
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Some vocabulary (cont.)

• parameter: in a function-declaration:  A local-variable, which is
initialized when the function is called.

• argument: The value used to initialize a parameter, when calling a
function.

(define (foo n) …) ; `n` is param.
(foo (+ 2 3)) ; 5 is an arg.

Some people use the terms interchangably; others use
“formal parameter” and “actual parameter”. But they’re
such useful, distinct concepts that I like having two
terms for them.
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Some vocabulary (cont.)

• literal: a value which literally appears in the source-code.
E.g. Java  37 or  045 are both literals representing the
value 37, which is of  type  int. And  37.,  37d, 
37e0 are each literal  double s. (But  pi is not, nor 
n+m.)

(We  will often confate a literal with the value it
represents, and only say “literal” when we’re emphasizing
that we’re dealing with syntax.)
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trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3).equals("hay")

Morever: string-literals with  + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.
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trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"                // true (!)
"Cathay".substring(3) == "hay"      // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with  + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.
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trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"                // true (!)
"Cathay".substring(3) == "hay"      // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with  + are computed at
compile-time.

"Cat".concat("hay") == "Cathay"

(*) This optimization is only safe because Java strings are immutable.
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trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"                // true (!)
"Cathay".substring(3) == "hay"      // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with  + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false   

(*) This optimization is only safe because Java strings are immutable.

16



trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"                // true (!)
"Cathay".substring(3) == "hay"      // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with  + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false   
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(*) This optimization is only safe because Java strings are immutable.
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trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"                // true (!)
"Cathay".substring(3) == "hay"      // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with  + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false   
"Cat" + "hay" == "Cathay"       // true (!)

(*) This optimization is only safe because Java strings are immutable.
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typing: when?

statically-typed: At compile-time, the types of all declared names are
known.

Usually provided by programmer and checked by
type-system; sometimes inferred by the language (ML,
Haskell). (Rust, Java, C# all do  some type-inference.)

dynamically-typed: Language knows the type of every value.

But a variable might hold values of different types, over
its lifetime. php, javascript, racket. Each value (incl.
primitive types) includes some extra “tag” bits, indicating
its type.
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static vs dynamic trade-offs

int foo() {if (true) return 17; else return "nope";}
will never ever lead to a type-error, yet Java’s
type-system will still reject it. The type-system is
“Sound”, but not “complete”.

str += (charAt(0)=='\n' ? "<br/>" : charAt(0));   
is sensible, but Java’s type-system will complain: What is
the  type returned by the conditional-expression?
Sometimes  String but sometimes  char, so
type-system rejects – even though += sensible either
way (overloaded).
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typing: other approaches

duck typing: Care about an object having a feld/method, not any
inheritance.

E.g. javascript

untyped: 

E.g. assembly

type-safe: Any type error is caught (either dynamically or
statically).

Note that C is not type-safe, due to casting. Java’s casting
 is type-safe(*) — a bad cast will fail at run-time.

(*) Actually, Java generics + casting  can bypass
type-safety, due to type-erasure.  :-(
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typing: strong/weak/non

These terms are often used in different ways:

strongly typed: no/few implicit type conversions,
or statically typed

weakly typed / untyped: many implicit type conversions,
or dynamically typed

Consider Java Math.sqrt(16), or 
"we have " + n+1 + " cookies"  (what if “n-1”?)

Cf. SQL (each column strongly-typed) vs SQLite (may
attempt type-conversion, but will allow storing any type
in a column).

Implicit conversions are often one way "scripting"
languages are more lightweight.
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Compiling

• A  compiler is a function

     compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

“Correctness”: the result-code has identical semantics to
source-code. 23
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Compiling

• A  compiler is a function

     compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

• A  cross-compiler is just  source-code → machine-code
where the machine-code produced be for a different
platform than the one the compiler is running on. (A
boring and archaic distinction.)

• A  transcompiler is  source-code → source-code, so
“compile Rust into javascript” is sensible. Machine
code is just one example of an target-language, so this
subsumes both previous terms.

“Correctness”: the result-code has identical semantics to
source-code. 25



Compiling vs Interpreting

•      compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.
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Compiling vs Interpreting

•      compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

• An  interpreter is a function

     eval : expr → value
which evaluates an expression, producing a result.

• Interpreted code: CPU runs the interpreter’s
op-codes; they look at the source-expression  as data,
updating internal state appropriately.

• Compiled code: CPU runs the op-codes of the desired
program directly.

• Compiled code: faster, but platform-specifc.
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Compiling vs Interpreting (cont.)

The distinction is practical, but not fundamental. You can
even view CPUs as interpreters for for compiled-code
(!) — they look at the op-codes as data, updating the
CPU’s state appropriately.

• A compromise: compile to  byte code; then interpret
that byte code.  Trades off speed  vs.
platform-dependence. (See also:  JIT.)

31


