
Three useful categories

Learning a programming language involves:

Syntax: The grammar rules defning a program (or fragment).

Semantics: The meaning of various programming fragments.

Pragmatics: How to effectively use language features, libs, IDEs, …

All three of these are important in how easy it is to
easily write high-quality software.

For all categories, consider: Principle of least surprise.

1

Some vocabulary

Do not confuse the following four!
• value:

• variable:

• type:

• expression:

2

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable:

• type:

• expression:

3

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type:

• expression:

4

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type: a set of values
E.g. Java’s short = {-32768,..., -1,0,+1,+2, ..., +32767}.

• expression:

5

Some vocabulary

Do not confuse the following four!
• value: a datum – the fundamental piece of information that can

be represented in the program
E.g. 37 or "hi". Values can be passed to functions,
returned, stored in variables.

• variable: an identifer which, at run time, evaluates to some
particular value.

• type: a set of values
E.g. Java’s short = {-32768,..., -1,0,+1,+2, ..., +32767}.

• expression: a piece of syntax which evaluates to some particular
value.

E.g. 3+4*5 or sqrt(16).

6

Some vocabulary (cont.)

• parameter: in a function-declaration: A local-variable, which is
initialized when the function is called.

• argument: The value used to initialize a parameter, when calling a
function.

(define (foo n) …) ; `n` is param.
(foo (+ 2 3)) ; 5 is an arg.

Some people use the terms interchangably; others use
“formal parameter” and “actual parameter”. But they’re
such useful, distinct concepts that I like having two
terms for them.

7

Some vocabulary (cont.)

• literal: a value which literally appears in the source-code.
E.g. Java 37 or 045 are both literals representing the
value 37, which is of type int. And 37., 37d,
37e0 are each literal double s. (But pi is not, nor
n+m.)

(We will often confate a literal with the value it
represents, and only say “literal” when we’re emphasizing
that we’re dealing with syntax.)

8

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3).equals("hay")

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

9

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

10

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3) == "hay"
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

11

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

12

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay"
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

13

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

(*) This optimization is only safe because Java strings are immutable.

14

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay"

(*) This optimization is only safe because Java strings are immutable.

15

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false

(*) This optimization is only safe because Java strings are immutable.

16

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false
"Cat" + "hay" == "Cathay"

(*) This optimization is only safe because Java strings are immutable.

17

trivia: Interning Java string-literals

Literals occur in the source-code text, and can be
processed at compile-time. In Java, string literals are
“interned”: If the same string-literal occurs twice, the
the compiler is smart enough to only make one
object(*), and use the same reference in both places.

"Cathay" == "Cathay" // true (!)
"Cathay".substring(3) == "hay" // false
"Cathay".substring(3).equals("hay") // true

Morever: string-literals with + are computed at
compile-time.

"Cat".concat("hay") == "Cathay" // false
"Cat" + "hay" == "Cathay" // true (!)

(*) This optimization is only safe because Java strings are immutable.

18

typing: when?

statically-typed: At compile-time, the types of all declared names are
known.

Usually provided by programmer and checked by
type-system; sometimes inferred by the language (ML,
Haskell). (Rust, Java, C# all do some type-inference.)

dynamically-typed: Language knows the type of every value.

But a variable might hold values of different types, over
its lifetime. php, javascript, racket. Each value (incl.
primitive types) includes some extra “tag” bits, indicating
its type.

19

static vs dynamic trade-offs

int foo() {if (true) return 17; else return "nope";}
will never ever lead to a type-error, yet Java’s
type-system will still reject it. The type-system is
“Sound”, but not “complete”.

str += (charAt(0)=='\n' ? "
" : charAt(0));
is sensible, but Java’s type-system will complain: What is
the type returned by the conditional-expression?
Sometimes String but sometimes char, so
type-system rejects – even though += sensible either
way (overloaded).

20

typing: other approaches

duck typing: Care about an object having a feld/method, not any
inheritance.

E.g. javascript

untyped:

E.g. assembly

type-safe: Any type error is caught (either dynamically or
statically).

Note that C is not type-safe, due to casting. Java’s casting
 is type-safe(*) — a bad cast will fail at run-time.

(*) Actually, Java generics + casting can bypass
type-safety, due to type-erasure. :-(

21

typing: strong/weak/non

These terms are often used in different ways:

strongly typed: no/few implicit type conversions,
or statically typed

weakly typed / untyped: many implicit type conversions,
or dynamically typed

Consider Java Math.sqrt(16), or
"we have " + n+1 + " cookies" (what if “n-1”?)

Cf. SQL (each column strongly-typed) vs SQLite (may
attempt type-conversion, but will allow storing any type
in a column).

Implicit conversions are often one way "scripting"
languages are more lightweight.

22

Compiling

• A compiler is a function

 compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

“Correctness”: the result-code has identical semantics to
source-code. 23

Compiling

• A compiler is a function

 compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

• A cross-compiler is just source-code → machine-code
where the machine-code produced be for a different
platform than the one the compiler is running on. (A
boring and archaic distinction.)

“Correctness”: the result-code has identical semantics to
source-code. 24

Compiling

• A compiler is a function

 compile : source-code → machine-code
The resulting machine-code, when executed, runs the
program which produces a resulting value.

• A cross-compiler is just source-code → machine-code
where the machine-code produced be for a different
platform than the one the compiler is running on. (A
boring and archaic distinction.)

• A transcompiler is source-code → source-code, so
“compile Rust into javascript” is sensible. Machine
code is just one example of an target-language, so this
subsumes both previous terms.

“Correctness”: the result-code has identical semantics to
source-code. 25

Compiling vs Interpreting

• compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

26

Compiling vs Interpreting

• compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a result.

27

Compiling vs Interpreting

• compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a result.

• Interpreted code: CPU runs the interpreter’s
op-codes; they look at the source-expression as data,
updating internal state appropriately.

28

Compiling vs Interpreting

• compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a result.

• Interpreted code: CPU runs the interpreter’s
op-codes; they look at the source-expression as data,
updating internal state appropriately.

• Compiled code: CPU runs the op-codes of the desired
program directly.

29

Compiling vs Interpreting

• compile : source-code → source-code
Btw, this general formulation is what people typically
mean by “compilation”.

• An interpreter is a function

 eval : expr → value
which evaluates an expression, producing a result.

• Interpreted code: CPU runs the interpreter’s
op-codes; they look at the source-expression as data,
updating internal state appropriately.

• Compiled code: CPU runs the op-codes of the desired
program directly.

• Compiled code: faster, but platform-specifc.

30

Compiling vs Interpreting (cont.)

The distinction is practical, but not fundamental. You can
even view CPUs as interpreters for for compiled-code
(!) — they look at the op-codes as data, updating the
CPU’s state appropriately.

• A compromise: compile to byte code; then interpret
that byte code. Trades off speed vs.
platform-dependence. (See also: JIT.)

31

