2.0 Introduction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application: A Logic-Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises

George F. Luger

ARTIFICIAL INTELLIGENCE
Structure and Strategies for Complex Problem Solving

Fourth Edition
DEFINITION

PROPOSITIONAL CALCULUS SYMBOLS

The *symbols* of propositional calculus are the propositional symbols:

P, Q, R, S, ...

truth symbols:

true, false

and connectives:

∧, ∨, ¬, →, ≡
DEFINITION

PROPOSITIONAL CALCULUS SENTENCES

Every propositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

The negation of a sentence is a sentence.

For example: ¬P and ¬false are sentences.

The conjunction, or and, of two sentences is a sentence.

For example: P ∧ ¬P is a sentence.

The disjunction, or or, of two sentences is a sentence.

For example: P ∨ ¬P is a sentence.

The implication of one sentence from another is a sentence.

For example: P → Q is a sentence.

The equivalence of two sentences is a sentence.

For example: P ∨ Q ⊨ R is a sentence.

Legal sentences are also called well-formed formulas or WFFs.
DEFINITION

PROPOSITIONAL CALCULUS SEMANTICS

An interpretation of a set of propositions is the assignment of a truth value, either T or F, to each propositional symbol.

The symbol true is always assigned T, and the symbol false is assigned F.

The interpretation or truth value for sentences is determined by:

The truth assignment of negation, $\neg P$, where P is any propositional symbol, is F if the assignment to P is T, and T if the assignment to P is F.

The truth assignment of conjunction, \land, is T only when both conjuncts have truth value T; otherwise it is F.

The truth assignment of disjunction, \lor, is F only when both disjuncts have truth value F; otherwise it is T.

The truth assignment of implication, \rightarrow, is F only when the premise or symbol before the implication is T and the truth value of the consequent or symbol after the implication is F; otherwise it is T.

The truth assignment of equivalence, \equiv, is T only when both expressions have the same truth assignment for all possible interpretations; otherwise it is F.
For propositional expressions P, Q and R:

$\neg (\neg P) \equiv P$

$(P \lor Q) \equiv (\neg P \rightarrow Q)$

the contrapositive law: $(P \rightarrow Q) \equiv (\neg Q \rightarrow \neg P)$

de Morgan’s law: $\neg (P \lor Q) \equiv (\neg P \land \neg Q)$ and $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$

the commutative laws: $(P \land Q) \equiv (Q \land P)$ and $(P \lor Q) \equiv (Q \lor P)$

the associative law: $((P \land Q) \land R) \equiv (P \land (Q \land R))$

the associative law: $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$

the distributive law: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

the distributive law: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
Figure 2.1: Truth table for the operator \wedge.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \wedge Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Figure 2.2: Truth table demonstrating the equivalence of $P \not\equiv Q$ and $\square P \triangle Q$.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$\neg P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$(\neg P \lor Q) = (P \Rightarrow Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The Predicate Calculus

- access the components of an individual assertion
- allow expression to contain variables

Example
- single proposition
 \[P = \text{it rained on Tuesday} \]

- Using predicate `weather`
 \[\text{weather(tuesday, rain)} \]
The Predicate Calculus Continued

- general assertion about clauses of entities

for all values of X, where X is a day of the week,

\(\text{weather}(X,\text{rain}) \)

- means that it rains every day
DEFINITION

PREDICATE CALCULUS SYMBOLS

The alphabet that makes up the symbols of the predicate calculus consists of:

1. The set of letters, both upper- and lowercase, of the English alphabet.
2. The set of digits, 0, 1, …, 9.
3. The underscore, _.

Symbols in the predicate calculus begin with a letter and are followed by any sequence of these legal characters.

Legitimate characters in the alphabet of predicate calculus symbols include

```plaintext
a R 6 9 p _ z
```

Examples of characters not in the alphabet include

```plaintext
# % @ / & “ ”
```

Legitimate predicate calculus symbols include

```plaintext
George fire3 tom_and_jerry bill XXXX friends_of
```

Examples of strings that are not legal symbols are

```plaintext
3jack “no blanks allowed” ab%cd ***71 duck!!
```
DEFINITION

SYMBOLS and TERMS

Predicate calculus symbols include:

1. *Truth symbols* **true** and **false** (these are reserved symbols).
2. *Constant symbols* are symbol expressions having the first character lowercase.
3. *Variable symbols* are symbol expressions beginning with an uppercase character.
4. *Function symbols* are symbol expressions having the first character lowercase. Functions have an attached arity indicating the number of elements of the domain mapped onto each element of the range.

A *function expression* consists of a function constant of arity **n**, followed by **n** terms, \(t_1, t_2, \ldots, t_n \), enclosed in parentheses and separated by commas.

A predicate calculus *term* is either a constant, variable, or function expression.
Examples

• Well-formed function expressions

 \[f(X, Y) \]

 father(david)

 price(bananas)

• arity (argument)

 in father(david), arity is 1

 in plus(2,3), arity is 2
DEFINITION

PREDICATES and ATOMIC SENTENCES

Predicate symbols are symbols beginning with a lowercase letter.

Predicates have an associated positive integer referred to as the \textit{arity} or “argument number” for the predicate. Predicates with the same name but different arities are considered distinct.

An atomic sentence is a predicate constant of arity n, followed by n terms, t_1, t_2, \cdots, t_n, enclosed in parentheses and separated by commas.

The truth values, \textbf{true} and \textbf{false}, are also atomic sentences.
Examples of atomic sentences

- A predicate relation is defined by its name and its arity

 likes(george,kate)
 likes(george,sarah,tuesday)
 friends(bill,george)
 friends(father_of(david),father_of(andrew))
 helps(richard,bill)
• atomic sentences are also called atomic expressions, atoms, or propositions

• combine atomic sentences using logical operators to form sentences in the predicate calculus

• operators are the same as connectives in propositional calculus

\[\land \quad \lor \quad \neg \quad \rightarrow \quad \equiv \]
Quantifiers

- Universal quantifier \(\forall \)

 is true for all values in the domain of the definition of \(X \)

- Variable quantifier \(\exists \)

 \[\exists Y \text{ friends}(Y, \text{peter}) \]

 is true if there is at least one object, indicated by \(Y \) that is a friend of peter
DEFINITION

PREDICATE CALCULUS SENTENCES

Every atomic sentence is a sentence.

1. If \(s \) is a sentence, then so is its negation, \(\neg s \).
2. If \(s_1 \) and \(s_2 \) are sentences, then so is their conjunction, \(s_1 \land s_2 \).
3. If \(s_1 \) and \(s_2 \) are sentences, then so is their disjunction, \(s_1 \lor s_2 \).
4. If \(s_1 \) and \(s_2 \) are sentences, then so is their implication, \(s_1 \rightarrow s_2 \).
5. If \(s_1 \) and \(s_2 \) are sentences, then so is their equivalence, \(s_1 \equiv s_2 \).
6. If \(X \) is a variable and \(s \) a sentence, then \(\forall X \ s \) is a sentence.
7. If \(X \) is a variable and \(s \) a sentence, then \(\exists X \ s \) is a sentence.
Examples

- let times and plus be functions symbols of arity 2 and
- let equal and foo be predicate symbols with arity 2 and 3 respectively

plus(two,three) is a function, not an atomic sentence

equal(plus(2,3),five) is an atomic sentence

equal(plus(2,3),7) is an atomic sentence

$\exists X \ foo(X,\text{two},plus(2,3)) \land equal(plus(2,3),5)$
verify_sentence algorithm

function verify_sentence(expression);
begin
 case
 expression is an atomic sentence: return SUCCESS;
 expression is of the form Q X s, where Q is either \(\forall \) or \(\exists \), X is a variable, and s is an expression;
 if verify_sentence(s) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 expression is of the form \(\neg s \):
 if verify_sentence(s) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 expression is of the form \(s_1 \ op \ s_2 \), where op is a binary logical operator:
 if verify_sentence(s_1) returns SUCCESS and
 verify_sentence(s_2) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 otherwise: return FAIL
 end
end.
Use of predicate calculus

mother(eve, abel)
father(adam, abel)
mother(eve, cain)
father(adam, cain)

\(\forall X \forall Y (father(X,Y) \lor mother(X,Y) \rightarrow parent(X,Y)) \)

\(\forall X \forall Y \forall Z (parent(X,Y) \land parent(X,Z) \rightarrow sibling(Y,Z)) \)
Semantics for the Predicate Calculus

- It is important to determine well-formed expressions’ meaning in terms of objects, predicates and relations in the world.

- To use the predicate calculus as a representation for problem solving, we need to describe objects and relations in the domain of interpretation with a set of well-formed expressions.

- The terms and predicates of these expressions denote objects and relations in the domain.

- The database of predicate calculus expressions, each having truth value T, describes as “state of the world.”
DEFINITION

INTERPRETATION

Let the domain D be a nonempty set.

An *interpretation* over D is an assignment of the entities of D to each of the constant, variable, predicate, and function symbols of a predicate calculus expression, such that:

1. Each constant is assigned an element of D.
2. Each variable is assigned to a nonempty subset of D; these are the allowable substitutions for that variable.
3. Each function f of arity m is defined on m arguments of D and defines a mapping from D^m into D.
4. Each predicate p of arity n is defined on n arguments from D and defines a mapping from D^n into $\{T, F\}$.
Quantification of Variables

• likes(george,X)
 substituting kate and susie for X in likes(george, X)
 becomes
 likes(george,kate) and likes(george,susie)
• Variable X can be replaced to Y without changing meaning, and so called as “dummy”
• Variables must be quantified in either universally or existentially
• A variable is considered “free” if it is not within the scope of either the universal or existential quantifiers
• An expression is “closed” if all of its variables are quantified
• A “ground expression” has no variables at all
• In Predicate Calculus, all variables must be quantified
• Scope of quantification with parenthesis, X is universally quantified in both $p(X)$ and $r(X)$

$$\forall X (p(X) \lor q(Y) \rightarrow r(X))$$

• Relationship between negation and universal and existential quantifiers

$$\neg \exists X \ p(X) \equiv \forall X \ \neg p(X)$$
$$\neg \forall X \ p(X) \equiv \exists X \ \neg p(X)$$
$$\exists X \ p(X) \equiv \exists X \ p(Y)$$
$$\forall X \ q(X) \equiv \forall Y \ q(Y)$$
$$\forall X \ (p(X) \land q(X)) \equiv \forall X \ p(X) \land \forall Y \ q(Y)$$
$$\exists X \ (p(X) \lor q(X)) \equiv \exists X \ p(X) \lor \exists Y \ q(Y)$$