Section 2: Rings and Fields

HW p. 10 # 1-9 at the end of the notes

In this section, we discuss the basics of rings and fields.

Rings

Definition 2.1: A *ring* $< R, +, \cdot >$ is a non-empty set R with two binary operations + and \cdot , normally called addition and multiplication, defined on R such that R is closed under + and \cdot , that is for $a, b \in R$, $a + b \in R$ and $a \cdot b \in R$, and where the following axioms are satisfied for all $a, b, c \in R$:

- 1. R_1 : $\langle R, + \rangle$ is an abelian group, that is
 - a. (a+b)+c=a+(b+c) (Associatively under + is satisfied)
 - b. For each $a \in R$, there exists an identity $0 \in R$ were

$$\underbrace{a+0} = \underbrace{0+a} = a \qquad (R \text{ has an additive Identity})$$

c. For each $a \in R$, there exists an $-a \in R$ where

a + (-a) = (-a) + a = 0 (Each element in R has an additive inverse)

- d. a+b=b+a (Addition is commutative)
- 2. $\overline{R_2}$: $\overline{(ab)c} = a(bc)$ (Associativity under · is satisfied)
- 3. R_3 : a(b+c) = ab + ac (Left and Right Distributive laws are satisfied) (a+b)c = ac + bc

Definition 2.2: A *commutative ring* is a ring R that satisfies ab = ba for all $a, b \in R$ (it is commutative under multiplication). Note that rings are always by condition 1 commutative under addition.

Definition 2.3: A *ring with unity* is a ring with the multiplicative identity, that is, there exists $1 \in R$ where $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$.

Examples of Rings

Example 1: Show that the integers $\langle Z, +, \cdot \rangle$ represents a ring.

Solution: The integers $< Z, +, \cdot >$ represents a ring. For $a, b \in Z$, it is known that Z is closed under + and \cdot , that is $a+b\in Z$ and $a\cdot b\in Z$. For $a,b,c\in Z$, we must next show it satisfied the 3 properties for a ring.

- 1. R_1 : < Z, +> is known to be an an abelian group, that is
 - a. (a+b)+c=a+(b+c) (Z is known to be associative under +)
 - b. For each $a \in Z$, there exists an identity zero given by $0 \in Z$ were
 - a + 0 = 0 + a = a (0 is the known additive identity element in the integers)
 - c. For each $a \in Z$, there exists an $-a \in Z$ where
 - a + (-a) = (-a) + a = 0 (Each element in Z has an additive inverse obtained by negating the element)
 - d. a+b=b+a (Z is known to be commutative under +)
- 2. R_2 : (ab)c = a(bc) (Z is known to be associative under ·)
- 3. R_3 : a(b+c) = ab + ac (Left and Right Distributive laws are known to hold in the (a+b)c = ac + bc integers.)

Notes:

- i. Z is a commutative ring since the integers are known to be commutative under multiplication, that is ab = ba for all $a, b \in Z$.
- ii. Z has unity 1 since $1 \cdot a = a \cdot 1 = a$ for all $a \in Z$.

- 2

Z= { ..., -3, -2, -1, 0, 1, 2, 3, 4, ...}

Example 2: Show that $3Z = \{..., -12, -9, -6, -3, 0, 3, 6, 9, 12, ...\}$ is a ring. Is 3Z a commutative ring? Does it have unity Let a, b, c & 32 a=3l, b=3m, c=3n, $l,m,n \in \mathbb{Z}$ Note: 32 is closed under +: a+b=3l+3m=3(l+m) & 32 15 closed under •; ab = (31)(3m) = 3(3lm) & 32 P,:i) Assoc: (a+b)+c=a+(b+c) Integers are known to be assoc under + ii) Additive Identity: It DESt, and Ota = ato = a for all a ESE iii) Additue Invest: If a & 37, -a = -31 = 3(-1) & 32 and a + (-a) = (-a) + a = 0iv.) Communder +: a+b=b+a (known for integer +) Rz: Assoc under. (ab) c = a (bc) Integer mult is known to be R3: Distributure law: a (btc) = abt ac } known fact ten the Hence 32 15 15 a ring!

Note: 32 15 commutative: 9-6= 6.9 (known fact tom) Note: 32 does not have a unity element (1\$32)

Definition 2.4: The Cartesian product of the groups $G_1, G_2, ..., G_n$ is the set $(a_1, a_2, ..., a_n)$, where $a_i \in G_i$ for i = 1, 2, ..., n. We denote the Cartesian product by

$$G_1 \times G_2 \times \cdots \times G_n = \prod_{i=1}^n G_i$$
.

Recall that a group G is a non-empty set that is closed under a binary operation * that satisfy the following 3 axioms

- 1. Associativity: For all $a, b, c \in G$, (a*b)*c = a*(b*c).
- 2. Identity: For any $a \in G$, there exists an $e \in G$ where a * e = e * a = a.
- 3. Inverse: For each $a \in G$, there exists an element $a^{-1} \in G$ where $a*a^{-1} = a^{-1}*a = e$.

Fact: The Cartesian product $G_1 \times G_2 \times \cdots \times G_n$ forms a group under the binary operation $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n), \ a_i, b_i \in G_i.$

Proof: Note that G is closed. This is true because, since each G_i is a group, each G_i is closed and $a_i b_i \in G_i$ for any $a_i, b_i \in G_i$. Hence

$$(a_1b_1, a_2b_2, \dots, a_nb_n) \in G_1 \times G_2 \times \dots \times G_n$$
 since $a_ib_i \in G_i$

We next prove the 3 group properties.

- 1. Associativity: Let $x, y, z \in G_1 \times G_2 \times \cdots \times G_n$. Then $x = (a_1, a_2, \dots, a_n)$, $y = (b_1, b_2, ..., b_n)$, and $z = (c_1, c_2, ..., c_n)$ where $a_i, b_i, c_i \in G_i$. It can be show that both (xy)z and x(yz) equal $(a_1b_1c_1, a_2b_2c_2, ..., a_nb_nc_n)$. Hence, $G_1 \times G_2 \times \cdots \times G_n$ is associative.
- 2. Identity: The identity is given by $e = (e_1, e_2, ..., e_n)$, where each e_i is the identity for the group G_i . Note that for $x = (a_1, a_2, ..., a_n)$, we have

$$xe = (a_1, a_2, ..., a_n)(e_1, e_2, ..., e_n) = (a_1e_1, a_2e_2, ..., a_ne_n) = (a_1, a_2, ..., a_n) = x$$

Similarly, we can show ex = x.

3. Inverse. For each $a_i \in G_i$, $a_i^{-1} \in G_i$ since G_i is a group. Hence, the inverse of $x = (a_1, a_2, ..., a_n)$ is $x^{-1} = (a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$. Note that

$$xx^{-1} = (a_1, a_2, \dots, a_n)(a_1^{-1}, a_2^{-1}, \dots, a_n^{-1}) = (a_1a_1^{-1}, a_2a_2^{-1}, \dots, a_na_n^{-1}) = (e_1, e_2, \dots, e_n) = e$$

Similarly, $x^{-1}x = e$.

Hence, by definition, $G_1 \times G_2 \times \cdots \times G_n$ is a group.

Example 3: Show $4Z \times Z$ is a ring under addition and multiplication.

Solution: Let $a, b, c \in 4Z \times Z$. Then $a = (4s_1, t_1)$, $b = (4s_2, t_2)$, and $c = (4s_3, t_3)$ where $s_1, t_1, s_2, t_2, s_3, t_3 \in \overline{Z}$. Note that $4Z \times Z$ is closed under + and \cdot since

$$a+b=(\underline{4s_1,t_1})+(4s_2,t_2)=(\underline{4s_1}+4s_2,t_1+t_2)=(4(s_1+s_2),t_1+t_2)\in 4Z\times Z\ .$$

and

$$a \cdot b = (4s_1, t_1) \cdot (4s_2, t_2) = (16s_1s_2, t_1t_2) = (4(4s_1s_2), t_1t_2) \in 4Z \times Z \;.$$

We now demonstrate that this set satisfies the 3 properties for a ring,

 R_1 : $4Z \times Z$ is an abelian group under + since

i) $4Z \times Z$ is associative under + since

$$\frac{(a+b)+c = [(4s_1,t_1)+(4s_2,t_2)]+(4s_3,t_3)}{= (4s_1+4s_2,t_1+t_2)+(4s_3,t_3)}
= (4s_1+4s_2+4s_3,t_1+t_2+t_3)
= (4s_1,t_1)+(4s_2+4s_3,t_2+t_3)
= (4s_1,t_1)+[(4s_2,t_2)+(4s_3,t_3)]
= a+(b+c)$$

ii) $0 = (0, 0) \in 4Z \times Z$ serves as the identity under + since

$$\underbrace{a + 0 = (4s_1, t_1) + (0, 0) = (4s_1 + 0, t_1) = (4s_1, t_1) = (0 + 4s_1, 0 + t_1) = (0, 0) + (4s_1, t_1) = 0 + a = 0$$

iii) For $a = (4s_1, t_1)$, then $-a = (-4s_1, -t_1) \in 4Z \times Z$ serves as the additive inverse since

$$\underbrace{a + (-a)}_{= (4s_1, t_1) + (-4s_1, -t_1) = (4s_1 - 4s_1, t_1 - t_1)}_{= (0, 0)}$$

$$= (-4s_1 + 4s_1, -t_1 + t_1)$$

$$= (-4s_1, -t_1) + (4s_1, t_1)$$

$$= (-a) + a$$

iv) $4Z \times Z$ is abelian under + since

$$a+b=(4s_1,t_1)+(4s_2,t_2)=(4s_1+4s_2,t_1+t_2)=(4s_2+4s_1,t_2+t_1)=(4s_2,t_2)+(4s_1,t_1)=b+a$$

42 X 2 m stoord 2nd coord is an integer integer

 $R_2: 4Z \times Z$ is associative under multiplication. $(ab)c = [(4s_1,t_1)(4s_2,t_2)](4s_3,t_3)$ $=(4s_14s_2,t_1t_2)(4s_3,t_3)$ $=(4s_14s_24s_3,t_1t_2t_3)$ $=(4s_1,t_1)(4s_24s_3,t_2t_3)$ $= (4s_1,t_1)[(4s_2,t_2)(4s_3,t_3)]$ = a(bc) R_3 : The distributive laws hold. For example, $a(b+c)=(4s_1,t_1)[(4s_2,t_2)+(4s_3,t_3)]$ $=(4s_1,t_1)(4s_2+4s_3,t_2+t_3)$ $= (4s_1(4s_2+4s_3),t_1(t_2+t_3))$ 42X2 15 commatative $= (4s_1 4s_2 + 4s_1 4s_3, t_1 t_2 + t_1 t_3)$ $= (4s_1 4s_2, t_1 t_2) + (4s_1 4s_3, t_1 t_3)$ $= (4s_1, t_1)(4s_2, t_2) + (4s_1, t_1)(4s_3, t_3)$ = ab + ac1,1) does not have a unity element (1,1) (1,1) \$ 42x2 A similar argument can be used to show (a+b)c = ac + bcSince all of the properties hold, $4Z \times Z$ is a ring. 56 mol 9 = 2

Note: The set of $m \times n$ matrices with entries in a ring R is an example of a noncommutative ring since matrix multiplication is known not to be commutative. _____

Theorem 2.5: If R is a ring with additive identity of 0, then for any $a, b \in R$, we have

- 1. 0a = a0 = 0. 2. a(-b) = (-a)b = -(ab)3. (-a)(-b) = ab

Proof:

1.

2. We show that a(-b) = -(ab).

Now,
$$a(-b) + ab = a(-b+b) = a(0) = 0$$
.

Then, adding -(ab) to both sides gives

$$a(-b) + ab + -(ab) = 0 + -(ab)$$

 $a(-b) + 0 = -(ab)$
 $a(-b) = -(ab)$

Similarly, it can be shown that (-a)b = -(ab).

3. Using property 2, we can show that

$$(-a)(-b) = -((-a)b) = -(-ab) = ab$$

Units

Definition 2.6: Let R be a ring with unity $1 \neq 0$. An element $u \in R$ is a unit of R if it has a multiplicative inverse in R. That is, for $u \in R$, there exists an element $u^{-1} \in R$ where $u \cdot u^{-1} = u^{-1} \cdot u = 1 \in R$. If <u>every non-zero element</u> of R is a unit, then \overline{R} is a division ring. A field is a commutative division ring.

Examples of Fields

The real numbers $\,R$ and rational numbers $\,\underline{\mathcal{Q}}\,$ under the operations of addition + and multiplication · are fields. However, the integers Z under addition + and multiplication · is not a field since the only non-zero elements that are units is -1 and 1. For example, the integer 2 has no multiplicative inverse since $\frac{1}{2} \notin Z$.

Example 5: Describe all units of the ring Z

Solution: only units rare - I and I of Z

(1) (1) = I multiplicate inverses are themsels

(-1) (-1) = which are integers

Example 6: Describe all units of the ring R. (veal # 's)

All nonzero reals are units since

 $\int_{0}^{\pi} a = \frac{1}{4} \text{ is mult inverse of } a, a \neq 0$

Example 7: Describe all units of the ring $Z \times Z$.

Solution:

Note: Unity element is (1,1)

(1,1)(1,1) = (1,1)(-1,-1)·(-1,-1)= (1,1) (-1,1)·(-1,1) = (1,1) (1,-1).(1,-1) = (1,1)

(41), (-4-1), (-41), (4-1)

Fact: For Z_n , $x \in Z_n$ is a unit only when god(x,n) = 1.

Example 9: Find all of the units for the ring Z_1 .

Solution: $Z_1 = \{0,1,2,3,...,m-1\}$ = god(1,10) = god(3,10) = god

Exercises

1. Determine if the following sets under the usual operations of addition and multiplication represent that of a ring. If it is a ring, state whether the ring is commutative, whether it has a unity element, and whether it is a field. If it is not a ring, indicate why it is not.

- a. Z under usual addition and multiplication. b. JR under usual addition and multiplication. ($RG = \frac{1}{2} + \frac$
- d. The set $M_2(R)$ of invertible 2×2 matrices with real entries under usual addition and multiplication.
- e. $Z \times 2Z$ under usual addition and multiplication by components

Z under usual subtraction and multiplication.

2 t = { 1, 2, 3, 4, 5, 6, 7, ... } Not a ring: Not closed under saltractors
take 3-5=-2 \$\frac{2}{2}\$

2. Compute the following products in the given ring.

- a. (10)(8) in Z₁₂
- b. (8)(5) in Z_{15}
- c. (-10)(4) in Z_{26}
- d. (2,3)(3,5) in $Z_5 \times Z_9$
- e. (-5, 3)(4, -7) in $Z_6 \times Z_{11}$

(-10)(4) = -40 med 26=121

3. Describe the units of the given rings.

- b. $Z \times Z$
- c. Q
- d. Z₅

4. Show that $x^2 - y^2 = (x + y)(x - y)$ for all x, y in a ring R if and only if R is commutative

5. Let (R,+) be an abelian group. Show that $(R,+,\cdot)$ is a ring if we define ab=0 for all $a,b \in R$.

Assume $x^2 - y^2 = (x + y)(x - y)$ and only if R is $x^2 - y^2 = (x + y)(x - y)$ five define ab = 0 for all $x^2 - y^2 = (x + y)(x - y)$ x

6. Show for the ring Z_2 , that the expansion $(x+y)^2 = x^2 + y^2$ is true.

and see what you get

Z, = {0,1} integers mad 2

7. Show for the ring Z_p , where p is prime, that the expansion $(x+y)^p = x^p + y^p$ is true. Hint: Note that for a commutative ring, the binomial expansion

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}a^n$$
here $\binom{n}{r} = \frac{n!}{r!(n-r)!}$, is true.

- 8. Show that the multiplicative inverse of a unit in a ring with unity is unique.
- An element of a ring R is idempotent if a² = a.
 Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
 - b. Find all idempotents in the ring $Z_6 \times Z_{12}$.
 - c. Show that if A is an $n \times n$ matrix such that AB is invertible, then the $n \times n$ matrix $B(AB)^{-1}A$ is an idempotent in the ring of $n \times n$ matrices.

b.) $\frac{2}{6} = \{0,1,2,3,4,5\} | z_{12} = \{0,1,2,3,4,5,6,7,8,9,10,14\}$ $\frac{2}{6}$ $\frac{2}{$

form all contrators of idempotents
elements of Z6 and Z12
11to Idempotent coordinates
11 Z6 X Z12
15t 2nd

The Pail is idempotent

(Pail) = Neil

To show closure under multiplication take two idempotent elements

Thin a = a b = b

I To prove closure, show ab

Is idempotent

You must show (ab) = ab

(ab) 2 = (ab)(ab) = ab

= ab

(3, 4) is I dimposent in $\frac{2}{6} \times \frac{2}{12}$ (3, 4) = (3, 4)(3, 4) = (9, 16) = (9, 16) = (3, 4)

Section2Math623 Page 14