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Subgroups
Practice HW # 1-9 p. 7 at the end of the notes

In this section, we discuss the basics of subgroups.
Fact: Instead of using the notation 
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, we normally use the following:


· 
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 if the binary operation is in multiplicative form.

· 
[image: image3.wmf]a

-

 if the binary operation is in additive from.

Definition 1: If a non-empty subset H of a group G is closed under the binary operation 
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 of G, that is, for 
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, and if H is itself a group, then H is a subgroup of G.
Two Facts about Subgroups of a Given Group G
1. 
G is a subgroup of itself.
2.
For the identity 
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, the one element set 
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 is a subgroup of G (called the trivial group).
For example, Z under addition is a subgroup of 
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 under addition.


However, 
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 under subtraction is not a subgroup under subtraction since it is not closed (for example, for 
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Is there a way to verify that a subset is a group is a group without verifying the set satisfies each of the 4 group properties?

Theorem 1: A non-empty subset H of a group G is a subgroup of G under the binary operation 
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 provided
i) If 
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 (H is closed).

ii) If 
[image: image15.wmf]H

a

Î

, then  
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. (all elements in H must have their inverses in H ).


Proof: We are given that H is a subset of the group G. This implies that the other two of the group axioms that hold for G should hold for H. That is, H is associative since if 
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 since 
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. Since assumption (ii) says that if 
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 by the closure property given by (i). Thus H is a group and hence a subgroup of G.
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Example 1: Determine whether the set 
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 is a subgroup of the group of complex numbers C  under addition.

Solution: 
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Example 2: Determine whether the set 
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 of pure imaginary numbers including 0 is a subgroup of the group of complex numbers C  under addition.


Solution: 
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Example 3: Determine whether the set 
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 is a subgroup of the group of non-zero complex numbers 
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C

 under multiplication.


Solution: 
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Example 4: Determine whether the set 
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 of pure imaginary numbers including 0 is a subgroup of the group of non-zero complex numbers 
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 under multiplication.

Solution:



















█


Note: The set 
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 represents the group of all invertible 
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 matrices under matrix multiplication.
Example 5: Determine whether the set of 
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 matrices with determinant 2  is a subgroup of 
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 of 
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Solution: It is important to note that the set of 
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 matrices with determinant 2 is a subset of 
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 since any matrix with a non-zero determinant is invertible.

1.
Closure: Let A and B be two 
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 matrices where 
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. We want to show that the product of these two matrices 
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 is in this set, that is, we want to show that 
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. However, using the product property of determinants, we can see that 
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Hence, the product 
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is not a 
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 matrix with determinant of 2. Thus, the closure property fails.
Hence, the set of 
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 matrices with determinant 2 is not a subgroup of 
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Example 6: Let G be a group and let a be one fixed element of G. Show that the set 
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is a subgroup of G.

Solution: 
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Exercises

1.
Determine whether the following subsets of the group of complex numbers C is group under addition.


a.
R
b.
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c.
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2.
Determine whether the following subsets of the group of non-zero complex numbers 
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 is group under multiplication.


a.
R
b.
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c.
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3.
Determine whether the following set of matrices is a subgroup of the group of all invertible 
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 matrices 
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 with real entries.


a.
The 
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 matrices with determinant 2.


b.
The diagonal 
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 matrices with no zeros on the diagonal.


c.
The 
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 matrices with determinant -1.


d.
The 
[image: image57.wmf]n

n

´

 matrices with determinant -1 or 1.

4.
Prove that if G is an abelian group under the multiplication operation, then the set
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forms a subgroup of G.
5.
Show that if H and K are subgroups of an abelian group G, then


[image: image59.wmf]}

 

and

 

|

{

K

k

H

h

hk

T

Î

Î

=



is a subgroup of G.

6.
Let S be any subset of a group G. Show that 
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is a subgroup of G.
7.
The center of a group G is the set
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Prove that 
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 is a subgroup of G.
8.
Let H be a subgroup of a group G and, for 
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, let 
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Show that 
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 is a subgroup of G.

9.
Let r and s be positive integers. Show that
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is a subgroup of Z.
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