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Cyclic Groups
HW # 1-13 p. 16 at the end of the notes

In this section, we discuss the basics of cyclic groups and subgroups. First, discuss the basics of another type of group.
Definition 1: The Cartesian product of the groups 
[image: image1.wmf]n

G

G

G

 

,

 

,

 

,

2

1

K

  is the set 
[image: image2.wmf])

 

,

 

,

 

,

(

2

1

n

a

a

a

K

,  where 
[image: image3.wmf]i

i

G

a

Î

 for 
[image: image4.wmf]n

i

 

,

 

2,

 

,

1

K

=

. We denote the Cartesian product by


[image: image5.wmf]Õ

=

=

´

´

´

n

i

i

n

G

G

G

G

1

2

1

L

.

Fact: The Cartesian product 
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 forms a group under the binary operation 
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Proof: 

1.
Closure: Note that G is closed. This is true because, since each 
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Associativity: Let 
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3.
Identity: The identity is given by 
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Similarly, we can show 
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Inverse. For each 
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Example 1: List out the elements of the groups 
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Fact: The group 
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Exponential Notation

In multiplicative form, 
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Other Exponent Facts
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Cyclic Groups

Theorem 1: Let G be a group and let 
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is a subgroup of G  and is the smallest subgroup of G that contains a, that is, every subgroup that contains the element a will contain H.
Proof: To prove that H is a subgroup of G, let 
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2. Inverse: If 
[image: image58.wmf]r

a

x

=

, it follows that 
[image: image59.wmf]r

a

x

-

-

=

1

 since


[image: image60.wmf]e

a

a

a

a

r

r

r

r

=

=

=

-

+

-

0

)

(


Since 
[image: image61.wmf]Z

r

Î

-

, it follows that 
[image: image62.wmf]H

a

x

r

Î

=

-

-

1


Thus, the closure property holds

Hence, H is a subgroup of the group G. To show H is the smallest subgroup of G containing a, suppose K is a smallest subgroup of G that contains a. Let 
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Definition 2: Let G be a group. Then the subgroup 
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Definition 3: Let G be a group. An element 
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Example 2: Determine if the group 
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 is cyclic. If so, name all of its cyclic generators.
Solution: 













█

Example 3: Determine if the group 
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 is cyclic. If so, name all of its cyclic generators.

Solution: 
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Example 4: Determine if the group < R, + >  is cyclic. If so, name all of its cyclic generators.
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Example 5:  Determine if the group 
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Example 6: Determine if the group < 
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Example 7: Describe the elements of the cyclic group 
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Example 8: Describe the elements of the cyclic group 
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Solution: Since we can see that 
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Example 9: Describe the elements of the cyclic subgroup of 
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Order of an Element of a Group
Definition 4: Let 
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Example 10: For the cyclic group 
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Example 11: For the cyclic group 
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Example 12: Find the order of the elements (1, 2) and (1, 1) in 
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Thus, (1, 2) is of order 2 and generates the subgroup 
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Thus, (1, 1) is of order 4 and generates the subgroup 
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Example 12: Find the order of the elements 2 and 3 in 
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We next examine two important theorems concerning cyclic groups.

Theorem 2:  Every cyclic group is abelian.
Proof: 
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Theorem 3:  A subgroup of a cyclic group is cyclic.

Proof: Let H be a subgroup of a cyclic group G generated by a. If 
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The Multiplicative Cyclic Group 
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An important cyclic group is the set of non-zero integers modulo p, designated by 
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Fact: The multiplicative group 
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However, it is easy to see the element 4 is not a cyclic generator but only generates a the cyclic subgroup {1, 2, 4} of 
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The question we want to ask is are we guaranteed to have cyclic generators for the group 
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Theorem 4: (Fermat’s Little Theorem) Let p be a prime number, a an integer where 
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Fermat’s Little Theorem guarantees that for any 
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. However, the theorem does not guarantee that 
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Definition 4: An element 
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 is the smallest exponent that a can be raised to obtain a result of 1. That is, a will be a cyclic generator of 
[image: image163.wmf]*

p

Z

. 

Here are a couple of notable items.

Facts

1.
For 
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If 
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There is no known way to generate which elements of  
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Method for Determining if 
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then a will be a primitive element of 
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Example 12: Determine whether the elements 2 and 5 are primitive in 
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Example 12: Determine whether the elements 3 and 5 are primitive in 
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we can test the elements 3 and 5 as follows.

Element 3:

[image: image189.wmf]1

37

mod

3

37

mod

3

3

     

:

2

18

2

/

36

1

=

=

®

=

=

a

q


Since we have a result of 1 for the element 3, the element 3 will not be primitive element  and will not be a cyclic generator of 
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Since in either case we did not get a result of 1, 5 will be a primitive element and hence a cyclic generator of 
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Exercises

1.
Perform the following computations in the in following groups.


a.
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2. 
Determine the generators of the following cyclic groups.

a.
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b.
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c.
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d.
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e.
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f.
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g. 
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3.
For the group 
[image: image214.wmf]8

Z

 of eight elements, perform the following.
a. Compute the cyclic subgroups 
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b. Which elements are generators of 
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 from part a.
4.
Find the order of the cyclic subgroup of the given group generated by the indicated element.

a.
The subgroup of 
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 generated by 2.


b.
The subgroup of 
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 generated by 3.


c.
The subgroup of 
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 generated by 4.


d.
The subgroup of 
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 generated by 4.


e.
The subgroup of 
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 generated by 5.


f. 
The subgroup of 
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 generated by 6.


g.
The subgroup of 
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 generated by 3.

5.
Find the order of the cyclic subgroup of the given group generated by the indicated element.


a.
The subgroup of 
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2
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´

 generated by (0, 1).


b.
The subgroup of 
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 generated by (2, 6).


c.
The subgroup of 
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 generated by (2, 3).


d.
The subgroup of 
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U

 generated by 3.


e.
The subgroup of 
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U

 generated by 7.


f.
The subgroup of 
[image: image237.wmf]*

7

Z

 generated by 2.


g. 
The subgroup of 
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Z

 generated by 6.

6.
Describe all of the elements of the cyclic subgroup of 
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 generated by the given 
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 matrices.


a.
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7.
Determine if the following elements are primitive elements of the given groups.

a.
The element 2 in 
[image: image245.wmf]*

5

Z

.


b.
The element 4 in 
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5

Z
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c.
The element 3 in 
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11

Z

.


d.
The element 7 in 
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11

Z

.


e.
The element 2 in 
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41

Z

.


f.
The element 6 in 
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41

Z

.

8.
Determine all of the primitive elements in the following groups.


a.

[image: image251.wmf]*

5

Z



b.
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7

Z



c.
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11

Z



d.
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13

Z


9.
Prove that a cyclic group with only one generator and have at most 2 elements.
10.
Show that a group with no proper nontrivial subgroups is cyclic.

11.
Prove that a direct product of abelian groups is abelian.

12.
Show that every group G of prime order must be cyclic.
13.
Let G be a group of order 
[image: image255.wmf]q

p

×

, where p and q are prime numbers. Show that every proper subgroup (every subgroup except G itself) is cyclic.
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