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Groups
Practice HW # 1-12 p. 18 at the end of the notes

In this section, we discuss the basics of groups. As we will see, the most basic number systems that we are accustomed to working with are examples of groups.

Groups
A group G is a non-empty set that under a binary operation 
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 that satisfies the following axioms
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Examples of Groups
Example 1: Show that the integers 
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 is a group under addition. 

Solution: For 
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  (Z is known to be associative under +)
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Example 2: Show that the non-zero rationals 
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Example 3: Determine why the set 
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Example 4: Determine whether the binary operation 
[image: image50.wmf]*

 defined on Z where 
[image: image51.wmf] 

3

 

=

 

a + b + 

b 

a

*

 represents that of a group.
Solution:













█
Example 5: Determine whether the binary operation 
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Definition 1: A group G is abelian if its binary operation is commutative.
Examples of abelian groups:

· 
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Definition 1: The set 
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 is defined to be the set of all possible integer multiples of the integer k.
Example 6:  Determine 
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Example 7: Determine if 
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 is an abelian group under +.
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Thus, 
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Example 8: Determine if the set of 
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 matrices with a non-zero determinant is an abelian group under matrix multiplication.
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The Group 
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Example 9: Determine if 
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Hence, we check the 4 group properties.
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Adding these two equations gives the equation
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Canceling the 
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Similarly, if we can use the division algorithm to compute
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Hence, we have two different equations representing 
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Recall that division algorithm says that when dividing two numbers, there is only one possible quotient and remainder. Hence, this says that 


[image: image112.wmf])

(

)

)

(

c

b

a

c

b

a

m

m

m

m

+

+

=

+

+


and hence the associativity property holds.
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The next question we want to examine more closely has to do with sets defined under multiplication and when sets defined under multiplication are groups and when not.

Properties of Groups

1. 
Left and Right Commutative Laws: If G is a group with binary operation 
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2. 
Unique Solution to Linear Equations: If G is a group with binary operation 
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3. 
Uniqueness of Identity Element and Inverse: In a group G, there is only one element 
[image: image137.wmf]G

e

Î

 such that 
[image: image138.wmf]a

e

a

a

e

=

*

=

*

 for each 
[image: image139.wmf]G

a

Î

. Likewise, there is one element 
[image: image140.wmf]G

a

Î

¢

 such that 
[image: image141.wmf]e

a

a

a

a

=

¢

*

=

*

¢

 for each 
[image: image142.wmf]G

a

Î

.

Proof: Suppose that 
[image: image143.wmf]G

e

e

Î

 

,

represent two identity elements of the group G. Then, 
[image: image144.wmf]e

and 
[image: image145.wmf]e

 are identity elements of every element of G, including each other. Hence, it

follows that

[image: image146.wmf]e

e

e

e

=

*

=

 


Suppose 
[image: image147.wmf]a

¢

 and 
[image: image148.wmf]a

¢

 are both inverses of an arbitrary element 
[image: image149.wmf]G

a

Î

. Then 


[image: image150.wmf]a

a

e

a

a

a

a

a

a

e

a

a

¢

=

¢

*

=

¢

*

*

¢

=

¢

*

*

¢

=

*

¢

=

¢

)

(

)

(














█

4.
If G is a group with binary operation 
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5.
For any element 
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Multiplicative Inverses

In the real number system, every non-zero number has a multiplicative inverse – the number you must multiply to a given number to get 1. In other words, every non-zero real number is a unit.

Example 10: Fill in the ( ) for 
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Note that the real numbers 
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 fail to be a group under multiplication since 0 fails to have a multiplicative inverse since 
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 does not exist. However, if we consider the non-zero real numbers 
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For some sets defined over multiplication, multiplicative inverses in most cases do not exist.

Example 11: Name the elements in the set of integers 
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 that have multiplicative inverses under multiplication.
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For the set 
[image: image169.wmf]m

Z

, multiplicative inverses exist depending on a given condition, which we explain next.

Definition 2:  The greatest common divisor of two numbers, denoted as gcd(a,b), is the largest number that divides a and b evenly with no remainder. 

For example, gcd(10, 20). = 10 and gcd(72, 108) = 36.
The condition for which a multiplicative inverse exists is given by the following theorem, which for now we state without proof.
Theorem 1:  If the 
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[image: image172.wmf]m

Z

.
Definition 3:  The set of elements in 
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Fact: The set of units 
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 represent an abelian group under multiplication.

Note that 
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 abelian since it is a subset of 
[image: image188.wmf]m

Z

 and all elements of 
[image: image189.wmf]m

Z

 are commutative under multiplication.
Example 11: Determine the group of units 
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This leads to the following important fact.

Fact: If p is a prime number, the set of non-zero elements 
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 is a group under multiplication.
The fact follows that since the only divisors of a prime p are 1 and itself, if 
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Exercises

1. 
Determine whether the binary operation 
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 defined on the following sets represent a group. If not a group, state a reason why.

a.
Let 
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be defined on 
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Let 
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Let 
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Let 
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Let 
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2.
A diagonal matrix is a square matrix whose only nonzero entries lie on the main diagonal, from the upper left to the lower right corner. Determine if the following set of matrices under the specified operation is a group.
a. All 
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b. All 
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 diagonal matrices under matrix multiplication.

c. All 
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 diagonal matrices with no zero diagonal entry under under matrix multiplication.

d. All 
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 diagonal matrices with all diagonal entries 1 or -1 under under matrix multiplication.
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Let S be the set of all real numbers except -1. Define 
[image: image222.wmf]*

 on S by

[image: image223.wmf]ab

b

a

b

a

+

+

=

*


a. Show that 
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 is a group.
b. Find the solution of the equation 
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 in S.

4.
If 
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For a group G, if 
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6.
If 
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 is a binary operation on a set S, an element 
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. Prove that a group has exactly one idempotent element.
7.
Show that every group G with identity e such that 
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Show that if  
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Let G be a group and let 
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Let G be a group and suppose 
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11.
Show that if G is a finite group with identity e and with an even number of elements, then there is a 
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 in G such that 
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12.
List the elements of the following group of units.


a.
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