PAGE  
1

Modular Arithmetic
HW # 1-2 p. 7 at the end of the notes

In this section, we discuss the basics of modular arithmetic. As we will see later, the most basic number systems that we are accustomed to working with are examples of groups, rings and fields. First, we review some basic set notation and then the basics of modular arithmetic.

Notation for Special Sets

Recall that a set is a collection of objects enclosed in braces. The objects in the sets are call elements. If a is an element of a set, we write 
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. Sets can have both a finite and an infinite number of elements. The following represents special notations that are used for widely known infinite sets.
Notation for Special Sets
1. 
Z = the set of integers 
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2.
Q = the set of rational numbers (numbers that can be expressed as the quotient 
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 represent the set of positive integers, positive rational numbers, and 

positive real numbers, respectively. For example, 
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5.
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 = the set of complex numbers, that is, numbers of the form 
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 represent the set of non-zero integers, non-zero rational numbers, non-zero real numbers, and non-zero complex numbers, respectively. For example, 
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 matrices with real entries. The matrices 
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Modular Arithmetic

To begin, we first review what it means to divide two numbers..

Definition 1.1: We say that a divides b, denoted as 
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For instance, we know that 
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 since there is no integer multiple of 5 that gives 21. Dividing two numbers gives a special case of the division algorithm, which we state next.
Division algorithm: Let 
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This leads into the definition of modular arithmetic.

Definition 1.2: Given two integers 
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 and a positive integer 
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, we say that a is congruent to b modulo m, written
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. The number m is called the modulus of the congruence.

Example 1: Explain why 
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Theorem 1.3: 
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Fact: Computationally, 
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For example, 
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Note: When performing modular arithmetic computationally, the remainder r should never be negative. Hence, when finding the remainder for 
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, look for the nearest integer that m divides that is less than b.
Example 2: Compare computing 
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Doing Modular Arithmetic For Larger Numbers With A Calculator
To do modular arithmetic with a calculator, we use the fact from the division algorithm that
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and solve for the remainder to obtain
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We put this result in division tableau format as follows:
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Example 3: Compute 
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Example 4: Compute 
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Solution: Using a calculator, we obtain 
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. The largest integer less than 48.6 is 48. Hence, we assign q = floor(48.6) = 48. If we let b= 500234 and m = 10301 in (2), then 
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The remainder of the division is r  = 5786. Hence, 
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Example 5: Compute 
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Solution: Using a calculator, we obtain 
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Thus, 
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Generalization of Modular Arithmetic 

Fact: The common remainder of two numbers have when they are divided can be used to define a congruence class. The remainder r will be the smallest positive integer in the congruence class. Suppose r is the remainder of 
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Theorem 1 says that then
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Example 6: Find all elements of the congruence class 
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Example 7 Find congruence class 
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Note: For 
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Fact: Given 
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Definition 3: We define the set of integers modulo m, denoted by 
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For example, 
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Exercises
1. 
For the following, used the division algorithm to compute 
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. State the quotient q and remainder r for the division. Use the result to compute 
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a.
b = 30, m = 7.


b.
b = -30, m = 7.


c.
b = 100, m = 26.


d.
b = -100, m = 26.


e.
b = 2047, m = 137.


f.
b = 123129, m = 10371.


g.
b = -319212, m = 31233.
2.
Find the set of elements that make up the following congruence classes.


a. 
The elements of the congruence class 
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b. 
The elements of the congruence class 
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c. 
The elements of the congruence class 
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Take Floor of Quotient (largest integer less than calculator value of � EMBED Equation.3  ���).
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