PAGE  
1

Rings of Polynomials
HW p. 8 # 1-7 at the end of the notes
Definition 1: Ring of Polynomials over R: Let R be a commutative ring. The set of formal symbols

[image: image1.wmf]}

,

|

{

]

[

0

1

1

1

+

-

-

Î

Î

+

+

+

+

=

Z

n

R

a

a

x

a

x

a

x

a

x

R

i

n

n

n

n

K


is called the ring of polynomials over R in the indeterminate form x.

Note: If 
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For example, the polynomial 
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Facts about Polynomials
1. 
Two polynomial elements of the same degree of in 
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corresponding coefficients are equal. That is, for
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2.
Polynomials in 
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 are added in the usual way, where the coefficients of like terms are added.

3.
Polynomials in 
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 are multiplied in the usual way, using the distributive laws. We even using the FOIL method on binomials since the ring R is commutative.

4.
If R has unity 1, then the unity polynomial for 
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Example 1: Find the sum and product of the polynomials 
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Theorem 1:  If R is an integral domain and if 
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Proof: Suppose 
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 is a polynomial of degree n and 
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For two integers a and b where 
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Theorem 2:  Division Algorithm for 
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Proof: We first show the existence of 
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We will use induction to prove the existence of 
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Solving for 
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Example 2: Find the quotient and remainder upon division of the polynomials  
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Example 3: Find the quotient and remainder upon division of the polynomials  
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Exercises
1.
Find the sum and product of the polynomials for the given polynomial ring.
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2.
Find the quotient and remainder upon division of the polynomials the given polynomial ring.


a. 
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3.
Prove that if R is an integral domain, then 
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4.
Including the zero polynomial, how many polynomials are there of degree 3 in 
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5.
Including the zero polynomial, how many polynomials are there of degree equal to 2 in 
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6.
Including the zero polynomial, how many polynomials are there of degree less than or equal to 3 in 
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7.
Including the zero polynomial, how many polynomials are there of degree less than or equal to 2 in 
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8.
If F is a field, show that 
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9.
Let R be an integral domain. Assume that the Division Algorithm always holds in 
[image: image133.wmf]]
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Prove that 
[image: image134.wmf]R

 is a field.
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