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Rings and Fields
HW p. 10 # 1-9  at the end of the notes

In this section, we discuss the basics of rings and fields.
Rings 

Definition 1: A ring 
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    (Each element in R  has an additive inverse)
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(Addition is commutative)
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Definition 2:  A commutative ring is a ring R that satisfies 
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Definition 3:  A ring with unity is a ring with the multiplicative identity, that is, there exists 
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Examples of Rings

Example 1: Show that the integers 
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 represents a ring. 

Solution: The integers 
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c. For each 
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(Z is known to be commutative under +)
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Notes: 
i. 
Z is a commutative ring since the integers are known to be commutative under multiplication, that is 
[image: image56.wmf]ba

ab

=

 for  all 
[image: image57.wmf]Z

b

a

Î

 

,

.
ii.
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Example 2: Show that 
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Definition 4: The Cartesian product of the groups 
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Recall that a group G is a non-empty set that is closed under a binary operation * that satisfy the following 3 axioms

1. Associativity: For all 
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2. Identity: For any 
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Fact: The Cartesian product 
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Proof: Note that G is closed. This is true because, since each 
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We next prove the 3 group properties.
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2.
Identity: The identity is given by 
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Similarly, we can show 
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Example 3: Show 
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We now demonstrate that this set satisfies the 4 properties for a ring,
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ii) 
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iii) 0 = (0, 0) 
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A similar argument can be used to show 
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Example 4: Compute (-4, 7) (2, 8) in 
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Solution:
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Note: The set of 
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 matrices with entries in a ring R is an example of a non-commutative ring since matrix multiplication is known not to be commutative.
Theorem 1: If R is a ring with additive identity of 0, then for any 
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Proof: 
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2. 
We show that 
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Then, adding  
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Similarly, it can be shown that 
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3.
Using property 2, we can show that
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Units
Definition 5: Let R be a ring with unity 
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. An element 
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 is a unit of R if it has a multiplicative inverse in R. That is, for 
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. If every non-zero element of R is a unit, then R is a division ring. A field is a commutative division ring.

Examples of Fields
The real numbers 
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and rational numbers 
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 under the operations of addition + and multiplication 
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 are fields. However, the integers Z under addition + and multiplication
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is not a field since the only non-zero elements that are units is -1 and 1. For example, the integer 2 has no multiplicative inverse since 
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Example 5: Describe all units of the ring Z.

Solution:
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Example 6: Describe all units of the ring 
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Example 7: Describe all units of the ring 
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Fact: For 
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Example 8: Find all of the units for the ring 
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Example 9: Find all of the units for the ring 
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Note: If p is a prime, then 
[image: image167.wmf]}

1

 

 

,

3

 

,

2

 

,

1

 

,

0

{

-

=

p

Z

p

K

 is a field since all non-zero elements are units.
Exercises
1.
Determine if the following sets under the usual operations of addition and multiplication represent that of a ring. If it is a ring, state whether the ring is commutative, whether it has a unity element, and whether it is a field. If it is not a ring, indicate why it is not.


a. 

[image: image168.wmf]Z

 under usual addition and multiplication.

b. 
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 under usual addition and multiplication.

c.
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 under usual addition and multiplication by components. 


d.
T he set 
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 of invertible 
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 matrices with real entries under usual addition and multiplication.


e.
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 under usual addition and multiplication by components. 


f.
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 under usual subtraction and multiplication.

2. 
Compute the following products in the given ring.

a.
(10)(8) in 
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b.
(8)(5) in 
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c.
(-10)(4) in 
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d.
(2, 3)(3, 5) in 
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e.
(-5, 3)(4, -7) in 
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3.
Describe the units of the given rings.
a. Z
b. 
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c. 
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d. 
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4.
Show that 
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 for all x, y in a ring R if and only if R is commutative.
5.
Let 
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6.
Show for the ring 
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7.
Show for the ring 
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, where p is prime, that the expansion 
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Hint: Note that for a commutative ring, the binomial expansion
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where 
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8.
Show that the multiplicative inverse of a unit in a ring with unity is unique.

9.
An element of a ring R is idempotent if 
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a.
Show that the set of all idempotent elements of a commutative ring is closed under 



multiplication.

b. Find all idempotents in the ring 
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c. Show that if A is an 
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 matrix such that 
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 is invertible, then the 
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