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Section 11: Reed-Solomon Codes
HW p. 21 # 1-6 at the end of the notes
In applications that are concerned with information transmission, we want to be assured that the information we transfer is correctly received at its destination. Whether we are dealing with verbal communication or transfer of information electronically by satellite or computer, the assurance that the message is received in its final form without errors is critical in the success of the application. 
Error Correcting Codes use mathematical techniques to ensure reliable data of data. If the data is corrupted when it arrives at its destination, a good error correcting code can correct the errors in the message and reproduced the information that was originally sent. In this section, we describe one of the most well known error correcting codes that employ much of the mathematics concerning polynomials that we have studied in previous sections.
Reed-Solomon Codes
Reed-Solomon Codes are named after its developers, Irving Reed and Gustave Solomon (see Figure 1), who developed the code in 1960.
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Figure 1: Picture of Irving Reed and Gustave Solomon, inventors of Reed-Solomon Codes.
The code is capable of correcting multiple errors and is good for correcting errors that occur in bursts, known as burst error correction. We describe the mathematics of the code next. 
Finite Fields and Reed-Solomon Codes

Reed-Solomon codes are constructed and decoded through the use of finite field arithmetic. The finite field we will use has the form 
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and reducing the elements using the polynomial resulting from the fact that 
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Example 1: Use the primitive polynomial 
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The following table represents the 
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Adding the 0 element completes the finite field of 16 elements.
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Transmitting a Message: Codeword Generation for Reed-Solomon Codes

In error correcting codes, the transmitted message is called a codeword. Reed-Solomon Codes form codewords and transmit information in terms of polynomial coefficients. The codewords are polynomials of degree 
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Suppose we want to transmit a message from a source to some destination. When setting up a scheme to transmit a message, we must specify the maximum number of errors that can be corrected in the transmission upon arrival to the message’s destination. Reed-Solomon codes can correct up to a certain number of errors in a transmitted message. Let t be this specified number of errors. Then as long as
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Codewords in Reed-Solomon codes are created by taking multiples of the polynomial 
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where a is a root of the primitive polynomial 
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Since every coefficient is an element of 
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codewords can be formed. We demonstrate how a codeword is created in the next example. 
Example 2: Suppose we want to construct a Reed-Solomon code of length 15 that corrects 2 errors. For the polynomial coefficients, we use the finite field for from Example 1 constructed with the primitive polynomial 
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Solution:
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Error Correction in Reed-Solomon Codes
A primary reason codewords are constructed by taking multiples of the generating polynomial is due to fact that it provides an easy way to see if the codeword is received correctly when it reaches its destination. Recall that the generating polynomial has the form 
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Thus, it can be easily seen that
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Recall that a codeword 
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This provides a method of checking to see if 
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We define the polynomials 
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Then, substituting into equation 2, we have
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Binary Reed-Solomon Codes and Burst-Error Correction
In computer data transfer, information is normally stored using binary numbers made up of 0’s and 1’s. We now describe how Reed-Solomon Codes transfer information in terms of binary numbers.

Suppose we set up a Reed-Solomon code with a primitive polynomial 
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Example 4: Recall in Example 1 we used the primitive polynomial 
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Note that the degree of each polynomial finite field element is less than 4, which is the degree of 
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 and get the binary representation as 0110. A summary of the binary representation is given by the following table.
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For a finite field of 
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Steps for Converting a Codeword to Binary Form
1. 
Write the codeword 
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We illustrate this process in the following example.
Example 5: Consider the codeword we formed in Example 2 given by
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Convert this codeword to binary form.

Solution: Recall that the primitive polynomial 
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We next use the table at the end of Example 4 to convert each power of 
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Using the binary conversion table to convert each coefficient to a binary block of 4 digits, we obtain the following binary representation of length 
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 0000 0000 0000 1111 0110 0001 1011 0111 0100 0111 1011 0100 1010 1110 0000
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In general, a code of length 
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Here, 2 polynomial coefficient errors will be guaranteed to correct a maximum of 4 + 1 = 5 

binary errors. It is possible it may correct 
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Fact: For a Reed-Solomon Code of length 
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to the codeword
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by correcting the two errors in polynomial coefficients of the terms 
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Comparing the binary representation of 
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 0000 0000 0000 1111 0110 0001 1011 0111 0100 0111 1011 0100 1010 1110 0000
we can see that 7 binary errors have been corrected ( minimum of 5 and a maximum of 8 could have been corrected).
As can be seen when comparing 
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 and 
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 above, Reed-Solomon codes are ideal for correcting error bursts.  When a binary codeword is transmitted, the received vector is said to contain an error burst if it contains several bit errors very close together.  In data transmitted through space, error bursts are frequently caused by very brief periods of intense solar energy.  It was for this reason that a Reed-Solomon code was used in the Voyager 2 satellite that transmitted photographs of several of the planets in our solar system back to Earth.  We will briefly discuss the use of a Reed-Solomon code in the Voyager 2 satellite below. But there are a variety of other reasons why errors in binary codewords often occur naturally in bursts, such as power surges in cable and telephone wires, various types of interference, and scratches on compact discs and DVDs.  As a result, Reed-Solomon codes have a rich assortment of applications, and are claimed to be the most frequently used digital error correcting codes in the world.  They are used extensively in the encoding of music on compact discs, have played an integral role in the development of high-speed supercomputers, and will be an important tool in the future for dealing with complex communication and information transfer systems. 
Reed-Solomon Codes and the Voyager Satellite Missions
In August and September 1977, NASA launched the Voyager 1 and Voyager 2 satellites from Cape Canaveral, Florida.  Upon reaching their initial destinations of Jupiter and Saturn, the Voyager satellites provided NASA with the most detailed analyses and images of these planets and their moons that had ever been observed.  After leaving Jupiter and Saturn, Voyager 2 continued farther into the outer reaches of our solar system, and successfully transmitted back to Earth data and images from Uranus and Neptune.  Without the use of a Reed-Solomon code in transmitting these images, the extreme success achieved by Voyager 2 would have been very unlikely.

Photographs transmitted back to Earth from outer space are usually digitized into binary strings and sent over a space channel.  Voyager 2 digitized its full-color images into binary strings of length 15,360,000 positions.  Using an uncompressed spacecraft telecommunication system, these bits were transmitted one by one back to Earth, where the images were then reconstructed.  This uncompressed system was the most reliable one available when Voyager 2 was launched, and was satisfactory for transmitting images back to Earth from Jupiter and Saturn.  However, when Voyager 2 arrived at Uranus in January 1986, it was about twice as far from Earth as it had been when it was at Saturn.  Since the transmission of bits back to Earth had already been stretched to a very slow rate from Saturn (around 44,800 bits per second), a new transmission method was necessary in order for NASA to be able to receive a large number of images from Uranus.
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Picture of Neptune and one of its moons Triton taken by the Voyager 2 satellite
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Picture of Uranus and the crescent of Neptune and Triton by the Voyager 2 satellite
The problem of image transmission from Uranus was solved through the work of Robert Rice at California Institute of Technology's Jet Propulsion Laboratory.  Rice developed an algorithm that implemented a compressed spacecraft telecommunication system which reduced by a factor of 2.5 the amount of data needed to transmit a single image from Uranus without causing any loss in image quality.  However, there was a problem with Rice's algorithm.  During the long transmissions through space, compressed binary strings experienced errors much more frequently than uncompressed strings, and Rice's algorithm was very sensitive to bit errors.  In fact, if a received compressed binary string from Uranus contained even only a single bit error, the entire resulting image would be completely ruined.  After considerable study, it was discovered that the bit errors that occurred during the long transmissions through space usually occurred in bursts.  To account for these error bursts, a new system was designed in Voyager 2 for converting images into binary strings that utilized a Reed-Solomon code.  These binary strings were then compressed and transmitted back to Earth, uncompressed using Rice's algorithm, and corrected using the Reed-Solomon error correction method.  This process was remarkably successful.

Exercises
1. 
Construct a polynomial codeword with the largest possible degree using the Reed-Solomon code of length 15 that will correct 2 errors given in Example 2, and then convert this polynomial codeword into a binary vector.
2.
Convert the binary vector 0000 0000 0000 0000 0000 0010 1110 1011 0110 1101 0000 0000 0000 0000 0000 into the polynomial codeword given by the Reed-Solomon code of length 15 that will correct 2 errors given in Example 2, and then verify that this polynomial really is a codeword in the code.

3.
Let C be the two-error correcting Reed-Solomon code that results from the primitive polynomial 
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a.
Construct the finite field used for this code.

      b.
Construct and simplify the generator polynomial for C.

      c.
Construct two of the polynomial codewords in C and then convert each of these polynomial codewords into binary vectors.


d.
How many codewords does this code contain?

      e.
Provided that only one error burst occurs during transmission of the binary equivalent of a polynomial codeword in C , what is the maximum error burst length that we would be guaranteed to be able to correct? In a best case scenario, how many errors can the code correct?
4.
Correct the following received polynomials in the Reed-Solomon code C in 

Exercise 3.
     
a.
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b.
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c.
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5.
Correct the following received polynomials in the Reed-Solomon code described in Examples 2 and 3.
      a.
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b.
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c.
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6.
Correct the following received polynomials in the three-error correcting Reed-Solomon code that results from the primitive polynomial 
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b.
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c.
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d.
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