Steps for Correcting Errors in Reed-Solomon Codes
1. Consider the received polynomial 
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 that is not a root of r(x). Find the syndromes
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If we substitute 
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 into r(x) and all evaluate to be 0, then r(x) is a codeword and we can stop. If we substitute 
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 into r(x) and any evaluate to not be 0, then r(x) is not a codeword and we must proceed to the necessary steps to correct it.

2.
Run the Euclidean Algorithm on the polynomial 
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and the syndrome polynomial 
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, recording the results in a Euclidean Algorithm table until the degree of the remainder 
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We set 
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. Recall in the Euclidean Algorithm Table that the equations of the form 
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 are used to calculate u and v polynomials on each row of table. Note that it actually only necessary polynomial  in this process to find is 
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 since this is the only polynomial that will be needed in the steps below.
3.
Find the roots of 
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for the finite field 
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Note that the number of roots of 
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4.
Let 
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 (the number of non-zero finite field elements). Suppose that 
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Then the coefficient of the 
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Note that 
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