Steps for Correcting Errors in Reed-Solomon Codes
1. Consider the received polynomial
[image: image1.wmf])

(

x

r

. If
[image: image2.wmf])

(

x

r

 is not a codeword, there will be at least one

of the terms
[image: image3.wmf]t

a

a

a

a

2

3

2

,

,

,

,

K

 that is not a root of r(x). Find the syndromes

[image: image4.wmf]t

i

a

r

S

i

i

2

,

,

2

,

1

for

)

(

K

=

=

If we substitute
[image: image5.wmf]t

a

a

a

a

2

3

2

,

,

,

,

K

 into r(x) and all evaluate to be 0, then r(x) is a codeword and we can stop. If we substitute
[image: image6.wmf]t

a

a

a

a

2

3

2

,

,

,

,

K

 into r(x) and any evaluate to not be 0, then r(x) is not a codeword and we must proceed to the necessary steps to correct it.

2.
Run the Euclidean Algorithm on the polynomial
[image: image7.wmf]t

z

z

f

2

)

(

=

and the syndrome polynomial
[image: image8.wmf]å

-

=

-

+

+

+

+

+

=

=

1

2

0

1

2

2

2

3

2

1

1

)

(

t

i

t

t

i

i

z

S

z

S

z

S

S

z

S

z

S

K

, recording the results in a Euclidean Algorithm table until the degree of the remainder
[image: image9.wmf]i

r

 is less that t , i.e.,
[image: image10.wmf]t

r

i

<

)

deg(

, where t is the number of errors the code corrects. Then from the relation

[image: image11.wmf]i

i

i

t

r

v

z

S

u

z

=

+

)

(

2

, where
[image: image12.wmf]t

r

i

<

deg

.

We set
[image: image13.wmf]i

u

z

U

=

)

(

,
[image: image14.wmf]i

v

z

V

=

)

(

, and
[image: image15.wmf]i

r

z

R

=

)

(

. Recall in the Euclidean Algorithm Table that the equations of the form
[image: image16.wmf]i

i

i

i

i

i

i

i

v

q

v

v

u

q

u

u

,

1

1

1

1

1

1

+

-

+

+

-

+

-

=

-

=

 are used to calculate u and v polynomials on each row of table. Note that it actually only necessary polynomial in this process to find is
[image: image17.wmf])

(

z

V

 since this is the only polynomial that will be needed in the steps below.
3.
Find the roots of
[image: image18.wmf])

(

z

V

 by evaluating it at the non-zero elements
[image: image19.wmf]1

,

,

,

,

,

1

2

2

2

3

2

=

-

-

n

n

a

a

a

a

a

K

for the finite field
[image: image20.wmf]))

(

/(

]

[

2

x

p

x

Z

F

=

 containing
[image: image21.wmf]n

2

 elements. That is, we look for where

[image: image22.wmf]1

,

,

,

2

,

1

for

,

0

)

(

1

2

2

2

=

=

=

-

-

n

n

a

a

i

a

V

i

K

Note that the number of roots of
[image: image23.wmf])

(

z

V

 is given by
[image: image24.wmf]))

(

deg(

z

V

.

4.
Let
[image: image25.wmf]1

2

-

=

n

m

 (the number of non-zero finite field elements). Suppose that
[image: image26.wmf]k

a

 is a root of
[image: image27.wmf])

(

z

V

, that is, suppose that

[image: image28.wmf]0

)

(

=

k

a

V

.

`
Then the coefficient of the
[image: image29.wmf]k

m

x

-

 term,
[image: image30.wmf]k

m

e

-

, for the error polynomial
[image: image31.wmf])

(

x

e

 is given by

[image: image32.wmf])

(

)

(

k

k

k

m

a

V

a

R

e

¢

=

-

Note that
[image: image33.wmf]1

2

)

(

-

=

=

+

-

n

m

k

k

m

, which is the number of non-zero finite field elements.
_1331284112.unknown

_1331307803.unknown

_1331309702.unknown

_1331309842.unknown

_1331309904.unknown

_1331310718.unknown

_1331309867.unknown

_1331309749.unknown

_1331309549.unknown

_1331309613.unknown

_1331307940.unknown

_1331285015.unknown

_1331307741.unknown

_1331285714.unknown

_1331286118.unknown

_1331284876.unknown

_1328274121.unknown

_1328274178.unknown

_1328274218.unknown

_1328274237.unknown

_1328274200.unknown

_1328274155.unknown

_1328192290.unknown

_1328258104.unknown

_1260466690.unknown

_1328005528.unknown

_1328184905.unknown

_1260466714.unknown

_1042904654.unknown

