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Section 10: Finite Fields
HW p. 8 # 1-3 at the end of the notes
Finite Fields are fields with a finite number of elements. We have already examined finite fields. Recall that given a prime p that the set of  integers modulo p given by
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is a finite field of p elements.

In this section, we want to consider finite fields constructed from the extension field 
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We would like an “easy” way to generate the elements in 
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Fact: The non-zero elements of a finite field, 
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Recall that for an irreducible polynomial
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Example 1: Consider the  polynomial 
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For a field F, let 
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Fact: There always exists and irreducible polynomial 
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This leads to another important fact concerning finite fields.

Theorem 10.1: All finite fields have 
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Although to give a general proof of Theorem 10.1, we need information concerning vector spaces, we can sketch the important ideas in the proof using the concepts in this section. If F is a field that is finite, its characteristic (the smallest integer p where 
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then the division algorithm says that each congruence class of  the finite field 
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Notes

1.
We denote the finite field 
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Procedure for Constructing Finite Fields of 
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Consider the field 
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Choose a primitive polynomial 
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Example 2: Construct the finite field 
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Solution: As we noted in Example 1, 
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In Example 1, we demonstrate how by taking increasing powers of 
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, we can generate the non-zero elements of the finite field. The results are given by
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Adding in the element 0 and the set of 9 finite field elements are given by
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Since we were able to generate the entire finite field, a is a primitive element and 
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Every irreducible polynomial 
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Example 3: Illustrate why the polynomial 
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Example 4: Construct the finite field 
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Exercises
1.
For each of the following polynomials
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