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Section 13: Primes, Multiplicative Inverses, and Exponentiation in Modular Arithmetic
Practice HW p. 16 # 1-13 at the end of the notes
The purpose of this section that we cover is to provide the mathematics background needed to understand the RSA Cryptosystem. We start out by reviewing some basic facts concerning prime numbers.

Prime Numbers
Recall that a prime number p is a number whose only divisors are 1 and itself (1 and p). A number that is not prime is said to be composite. The following set represents the set of primes that are less than 100:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…}
Here are some basic facts about primes.

Theorem 13.1: There are an infinite number of primes.

Proof: 

█

Example 1: Starting with the prime 
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Solution:
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Theorem 13.2: (Fundamental Theorem of Arithmetic). Every natural number can be factored into a product of primes. The factorization is unique if the order of the factorization is disregarded.

For example, to factor 30, we can compute
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Here is another fact that is useful about prime numbers.

Theorem 13.3: Suppose p is an integer and suppose a and b are integers where 
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Proof: Suppose 
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Multiplying both sides of this equation by b gives
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Finding Multiplicative Inverses in Modular Arithmetic
Recall that for 
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 by generating a Euclidean Algorithm table as described in Section 1.
Note When computing 
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We demonstrate this process in the following example.
Example 2: Compute 
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Solution:
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Example 3: Compute 
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Solution: We first generate an Euclidean algorithm table to find values u and v where 
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[image: image33.wmf]1

9875

54321

gcd

 

)

, 

(

=

 using the following process:


[image: image34.wmf]0

1

16

16

1

16

1

17

16

17

289

4929

17

4929

1

4946

4929

4946

1

9875

4946

9875

5

54321

+

×

=

+

×

=

+

×

=

+

×

=

+

×

=

+

×

=

   

    

  

          

          

   

         

:

5

 

Row

  

     

:

4

 

Row

   

     

:

3

 

Row

     

:

2

 

Row

   

     

:

1

 

Row

  

 

  

 

  

 


Hence, the 
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we generate u and v with the following equations for each row of the table.
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The previous results give the following Euclidean Algorithm Table:


[image: image54.wmf]3196

581

1

1

5

3185

579

16

289

4

11

2

17

1

3

6

1

4929

1

2

5

1

4946

5

1

1

0

9875

0

0

1

54321

1

0

0

1

1

-

-

-

-

-

=

=

=

-

-

=

=

=

-

-

-

-

-

   

     

   

   

   

 

   

   

   

V

   

     

U

   

R   

    

Q

   

    

Row

  

v

u

b

v

u

a








continued on next page
From the last row, we see that 
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Since we are working in mod 54321 arithmetic, we can convert v to its equivalent positive representation by computing v = -3196 (mod 54321) = 51125. We claim that v = 51125 is the multiplicative inverse, that is 
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Example 4: Solve 13x + 1 = 4 (mod 81) for  x.

Solution: We must first isolate x on one side of the equation.
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To finish this problem, we need to find 
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Note: If 
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Example 5: Compute 
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Exponentiation in Modular Arithmetic
As we will see later, the RSA Cryptosystem will require exponentiation with modular arithmetic to encrypt and decrypt messages. For example, we can easily see that 
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Method of Successive Squaring for computing 
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Example 6: Compute 
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Example 7: Compute 
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Solution: We first note that the exponent 
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We next write
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We next compute the needed powers of 9 needed with respect to the modulus 907. The ones that we will need are indicated by    . Note that arrows are used to indicate the substitutions from the previous step.
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Hence,
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Note: In Example 7, to compute 
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Fermat’s Little Theorem

Fermat’s Little Theorem in special cases can be used to simplify the process of modular exponentiation. We state it now.

Theorem 13.4: (Fermat’s Little Theorem) Let p be a prime number, a an integer where 
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Example 8: Use Fermat’s Little Theorem to simplify the following.
a. 
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b. 
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Euler-Phi Function

Given an integer m, the Euler-Phi function, denoted  by 
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For example, 
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We would like to have a method of computing 
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 when m is larger. The next theorems describe some efficient ways of doing this.

Theorem 13.5: If p is a prime number, then 
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Proof:
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Example 9: Compute 
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Theorem 13.6: If p is a prime number, then 
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Example 10: Compute 
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We next state without proof a fundamental result.
Theorem 13.7: For two positive integers m and n, if the 
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Example 11: Compute 
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Theorem 13.8: If  m  has the prime factorization 
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Proof: We can prove this result using mathematical induction. For the trivial case, that is, if 
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Now, assume the result is true if m is a product of r primes. We want to show the result is true if m is a product of r + 1 primes. Suppose 
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Hence, by the principle of mathematical induction, the result holds.













█

Corollary 13.9: If p and q are primes where 
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Proof: 
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Example 12: Compute 
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Example 13: Compute 
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Example 14: Compute 
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Exercises

1. 
Starting with the prime 
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, use the proof of Theorem 13.1 to generate a list of 


several primes.

2.
Compute the following multiplicative inverses.


a.
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d.

[image: image182.wmf])

131

 

(mod

 

3

1

-



e.

[image: image183.wmf])

52598

 

(mod

 

2541

1

-



f.
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3.
Solve the following modular equations for x.

a.
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4.
Use successive squares to compute the following.


a.
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5.
Use Fermat’s Little Theorem to help compute the following (note that each modulus is prime).

a.
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6.
Compute the Euler-Phi function of the following:


a.
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Show that if m has the prime factorization 
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Use the formula to find 
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Prove that if 
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Prove that if 
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Hint: Start by decomposing 
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 and 
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 into a product of prime factors. What does the 
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 tell you about this decomposition? Then use Exercise 7 – is probably easier to start with the right hand side first.
11.
Extend Theorem 13.3 and prove that if 
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Show that p is prime, then 
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