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Section 4.4: The RSA Cryptosystem
Practice HW p. 15 # 1-7 at the end of the notes

So far, the methods for encryption we have studied so far have been historical methods that are designed to primarily introduce encryption concepts but are not used to encipher and decipher messages in today’s computer age.  The RSA cryptosystem, name after its developers Ron Rivest, Adi Shamir, and Leonard Adelman, who invented the cryptosystem in 1977, is a method that has been widely publicized and is used widely today. 
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The purpose of this section is to describe the properties of the cryptosystem and some of its special properties.
RSA Cryptosystem Setup

The following describes the setup of how encipherment and decipherment works for the RSA Cryptosystem.

RSA Cryptosystem Setup
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2. 
The message receiver chooses a positive integer e is chosen where
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. Using the Euclidean algorithm, we calculate an integer d where 
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Note that d is the multiplicative inverse of 
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. Here, e will be called the enciphering exponent and d will be called the deciphering exponent.

3. 
Using an alphabet assignment to convert from English letters to numbers, the senderi of the message computes an English plaintext message number
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by successive squaring. Here, y will be the “secret” message number or ciphertext that will be transmitted from the sender to the recipient of the message. If 
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4.
To decipher the message, the recipient uses the deciphering exponent d to reverse the process of step 3 by computing 


[image: image19.wmf])

(mod

 

m

y

x

d

=

.


or if the cipher-text is in blocks 
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The alphabet assignment is used to recover the message.

Important Facts Concerning the RSA Cryptosystem

1.
A common place that causes confusion when first learning the RSA is when to use m  and 
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2.
To ensure 
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 exists, a good choice for the enciphering exponent k is a prime number (although it is not necessarily required).
3.
In practice, the modulus m and enciphering exponent e are made public (everyone knows).
4. 
The security of the method is based on keeping p and q secret. If p and q are secret, then 
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is impossible.

5.
If the message number x > m, then computing 
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x will not be recovered properly. The reason is that 
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6.
When the ciphertext message is formed, the numerical results obtained are not 

guaranteed to have a corresponding alphabet assignment letters for expressing the ciphertext in terms of letters. The ciphertext is normally left in numerical form.

ASCII Alphabet Assignment

When enciphering messages with the RSA, we will use the ASCII table as our alphabet assignment
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Figure 2: ASCII Table for Characters
This table allows us the flexibility to use letters, characters, and punctuation in our messages and the next example illustrates.

Example 1: Use the ASCII table to convert the message “THE RSA WAS INVENTED IN 1977” to numerical form.

Solution: Using the ASCII table, we can make the following assignments:
	Plain
	I
	N
	V
	E
	N
	T
	E
	D
	 
	I
	N
	
	1
	9
	7
	7
	.

	Cipher
	73
	78
	86
	69
	78
	84
	69
	68
	32
	73
	78
	32
	49
	57
	55
	55
	46

	Plain
	T
	H
	E
	 
	R
	S
	A
	 
	W
	A
	S
	 

	Cipher
	84
	72
	69
	32
	82
	83
	65
	32
	87
	65
	83
	32
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Note: If possible, we would like to represent a message such as the one from Example 3 as a “block” number. For example, representing the message in Example 3 as one block would give the number

8472693282836532876583327378866978846968327378324957555546

However, this technique has limitations. If the message number x is larger than the modulus m, that is, if x > m, we cannot encipher and decipher the message properly. We then have to break the message up into “block” numbers less than m
Example 2: Using the primes p = 17 and q = 23 with enciphering exponent e = 7 and

an ASCII alphabet assignment,  to create a RSA scheme for the message receiver that will allow the message sender to encipher the message USA and send a encrypted message to the receiver.

Solution: 
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Example 3: Let m = 33 and 
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  (produced using the primes p = 3 and q = 11). Using the encryption exponent e = 7 and decryption exponent d = 3, attempt to encipher the message “RU” as one block number and then attempt to recover the message.

Solution: Using the ASCII table, we convert RU to the block number 8285. Note that 

x = 8285 > 33 = m. To encrypt this message, we use e = 7 and compute
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To recover the message, we use the deciphering exponent d = 3 and compute
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Hence, the message is completely lost.
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Fact: 
When the message number x is larger than the modulus m, that is, when x > m, we encipher by breaking 
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Decipherment is done by computing
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Security of the RSA Cryptosystem
We now comment on what makes the RSA a secure cryptosystem. This security can be summarized by the following three comments.
Security of the Method

1. 
The security of the method is based on keeping the deciphering exponent d secret. To 

keep d secret, the primes p and q must be kept secret. If p and q can be secret, 
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2. However, it is much easier to find primes 
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3.
In practice, 100 digit primes or more are used. Technology for finding large primes is far ahead of the technology for factoring large numbers.

Example 4: Provide a simple discussion on issues involving the security of the RSA Cryptosystem.
Solution: 
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Example 5: Suppose the ciphertext 5459  3839  16577  17071 was intercepted that was encrypted using a public key of m = 21311 (produced using the primes p = 101 and q = 211) and encryption exponent e  = 7901. Decipher this message.
Solution: : To cryptanalyze and decipher this message, we need to find the decryption exponent d. Recall that 
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Thus, 
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we see that 
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. To decrypt the first ciphertext block 5449, we must perform the following computation.
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we see that 
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Decrypting each block and using the ASCII table, we see that we see that [5459, 3839, 16577, 17071]
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Thus, the plaintext is the word “DISTANCE”.
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The Public Key
When the RSA was developed, it was the first commercially developed type of system in which the sender and receiver of a message do not have to agree on a key beforehand in order to encipher and decipher messages. This illustrates an important fact that makes the RSA a special type. The RSA is an example of a public key cryptosystem. This fact allows an individual to have a personal value of m and enciphering exponent e that are made public knowledge so that any number of people can send the individual messages. Since only the person receiving the messages knows the deciphering exponent d, only he or she can decipher the messages. The following diagram describes this process:







   












     















      

Figure 1: Public Key Cryptosystem Illustration

Normally, a key center is responsible for distributing public and private keys to people who request them. This key center might be your company, school, or even teacher.
Explanation of Why the RSA Works

On the surface, it is not clear why, when a message is encrypted using the encryption exponent e and modulus m, one is guaranteed to recover the plaintext message from the ciphertext using the decryption exponent d and modulus m. The basics of why the method works is based on the following theorems.

Theorem 14.1: For integers x, y, and z, if 
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Theorem 14.2: Given that 
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Proof: We will consider two cases to prove this theorem.

Case 1: Suppose 
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By definition of congruence, this says that
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Multiplying both sides of the result by a gives
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Case 2: Suppose 
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and the result holds. If 
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Also, since 
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Raising both sides of this relationship to the 
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By definition of congruence, this says that 
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for some integer x. Multiplying both sides of this equation by p gives
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Using * and ** and the fact that 
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A similar result can be shown if we assume that 
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How does Theorem 14.2 prove that the RSA works?. Recall that to encipher a message, we compute
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where x is the numerical representation of the plaintext and y is the numerical representation of the ciphetext. For the encryption exponent e, we know that 
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 for some integer k. Thus, to recover the ciphertext x from the plaintext y, we compute
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Hence, the plaintext can  be recovered from the ciphertext.

Exercises
1.
Use the RSA setup from Example 2 to encipher the message MOD2
2.
Use the RSA setup from Example 2 to decipher the message 274  69  130  241  28  69  203
3.
Given the primes p = 23 and q = 37.


a.
Determine m and 
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(

m

f

.


b.
Given the enciphering exponent 
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=

e

, determine the deciphering exponent d.


c.
Encipher the message BATMAN.


d.
Decipher the message 333  204  223  92  785.
4.
Using the RSA scheme from Example 5, encipher the message RADFORD ROCKS.
5.
Using the RSA scheme from Example 5, decipher the message 7669  6832  9069  8080  6976  7378 .
6.
Given the primes p = 211 and q = 307.


a.
Determine m and 
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f
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b.
Given the enciphering exponent 
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=

e

, determine the deciphering exponent d.


c.
Encipher the message RADFORD HIGHLANDERS.


d.
Decipher the message 86738271  73787365  32846967  72327279  75736983.
7.
Suppose you want to send a message to a friend. You look up your friends RSA public-key and find that m = 1964556481 and e = 456899.  In blocks of 4 characters using the ASCII code numerical alphabet assignment, send your friend the message NC STATE IS IN RALEIGH. 
8.
If 
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, where p and q are primes and a is an integer, prove that 
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