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Section 1: Modular Arithmetic
HW # 1-4 p. 13 at the end of the notes

In this section, we discuss the basics of rings and fields. As we will see, the most basic number systems that we are accustomed to working with are examples of rings and fields.
First, we review some basic set notation and then the basics of modular arithmetic.

Notation for Special Sets

Recall that a set is a collection of objects enclosed in braces. The objects in the sets are call elements. If a is an element of a set, we write 
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. Sets can have both a finite and an infinite number of elements. The following represents special notations that are used for widely known infinite sets.
Notation for Special Sets
1. 
Z = the set of integers 
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2.
Q = the set of rational numbers (numbers that can be expressed as the quotient 
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positive real numbers, respectively. For example, 
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 = the set of complex numbers, that is, numbers of the form 
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 represent the set of non-zero integers, non-zero rational numbers, non-zero real numbers, and non-zero complex numbers, respectively. For example, 
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Modular Arithmetic

To begin, we first review what it means to divide two numbers..

Definition 1.1: We say that a divides b, denoted as 
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For instance, we know that 
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 since there is no integer multiple of 5 that gives 21. Dividing two numbers gives a special case of the division algorithm, which we state next.
Division algorithm: Let 
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This leads into the definition of modular arithmetic.

Definition 1.2: Given two integers 
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Example 1: Explain why 
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Theorem 1.3: 
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Fact: Computationally, 
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For example, 
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Note: When performing modular arithmetic computationally, the remainder r should never be negative. Hence, when finding the remainder for 
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, look for the nearest integer that m divides that is less than b.
Example 2: Compare computing 
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Doing Modular Arithmetic For Larger Numbers With A Calculator
To do modular arithmetic with a calculator, we use the fact from the division algorithm that
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We put this result in division tableau format as follows:
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Example 3: Compute 
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Example 4: Compute 
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Solution: Using a calculator, we obtain 
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. The largest integer less than 48.6 is 48. Hence, we assign q = floor(48.6) = 48. If we let b= 500234 and m = 10301 in (2), then 
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Example 5: Compute 
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Solution: Using a calculator, we obtain 
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Generalization of Modular Arithmetic 

Fact: The common remainder of two numbers have when they are divided can be used to define a congruence class. The remainder r will be the smallest positive integer in the congruence class. Suppose r is the remainder of 
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Example 6: Find all elements of the congruence class 
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Example 7 Find congruence class 
[image: image81.wmf]2

 modulo 7.

Solution:













█

Note: For 
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Fact: Given 
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Definition 3: We define the set of integers modulo m, denoted by 
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For example, 
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The Greatest Common Divisor of Two Numbers

The greatest common divisor of two numbers, denoted as gcd(a,b), is the largest number that divides a and b evenly with no remainder. For example, gcd(10, 20). = 10 and 

gcd(72, 108) = 36. Find the greatest common division of two numbers becomes more difficult is the numbers become larger. However, there is a well known method known as the Euclidean algorithm that will allows us to find the greatest common divisor of larger numbers which we state next.

The Euclidean Algorithm

The Euclidean Algorithm makes repeated use of the division algorithm to find the greatest common divisor of two positive integers. If we are given two positive integers a and b where 
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The last nonzero remainder, 
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Note: In general, we can write each equation of the Euclidean Algorithm Table as


[image: image104.wmf]1

1

1

 

+

+

-

+

=

i

i

i

i

r

r

q

r

 
Here, we can assign 
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Example 8: Find the greatest common divisor of a = 2299 and b = 627.

Solution: 
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Example 9: Find the greatest common divisor of a = 54321 and b = 9875.

Solution: Noting that 54321 > 9875 and applying the Euclidean algorithm gives
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Since the last non-zero remainder is 1, gcd(54321, 9875)= 1.
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Theorem 1.4: For any two positive integers a and b, there are integers u and v where
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Fact: When executing the Euclidean algorithm equations,
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We can create a table to determine the 
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Notes

1. 
The quotients under Q and remainders under R are computed using the basic Euclidean 

algorithm process. The table is complete when 
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For row i, we have 
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Example 10: Use an Euclidean algorithm table to find values u and v where 
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Example 11: Use an Euclidean algorithm table to find values u and v where 
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Solution: From Example 9, we ran the Euclidean Algorithm to find that 
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The previous results give the following Euclidean Algorithm Table:
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continued on next page
From the last row, we see that 
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 This answer can be verified by checking 
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Exercises
1. 
For the following, used the division algorithm to compute 
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. State the quotient q and remainder r for the division. Use the result to compute 
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m

b
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a.
b = 30, m = 7.


b.
b = -30, m = 7.


c.
b = 100, m = 26.


d.
b = -100, m = 26.


e.
b = 2047, m = 137.


f.
b = 123129, m = 10371.


g.
b = -319212, m = 31233.
2.
Use the Euclidean Algorithm to find the greatest common divisor of the following 


numbers.

a. 72 and 300.

b. 629 and 357

c. 52598 and 2541
d. 3854682 and 1095939

e. 101 and 127.

3.
For each exercise for Exercise 2, assign a and b and generate an Euclidean algorithm table to find integers u and v where 
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.
4.
Find the set of elements that make up the following congruence classes.


a. 
The elements of the congruence class 
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b. 
The elements of the congruence class 
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c. 
The elements of the congruence class 
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Take Floor of Quotient (largest integer less than calculator value of � EMBED Equation.3  ���).
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