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Section 3: Integral Domains and Fields
HW p. 10 # 1-10 at the end of the notes
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Hence, we solve this quadratic equation as follows:
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However, suppose we are asked to solve the equation 
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More than 2 solutions exist because 6 and 4 are zero divisors. That is, 
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Definition 3.1: If a and b are two non-zero elements in a ring R such that 
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, then a and b are divisors of zero (or zero divisors).
For example, in 
[image: image23.wmf]10

Z
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[image: image24.wmf]0

)

10

mod

(

 

40

8

5

        

0,

)

10

mod

(

 

30

6

5

  

0,

)

10

mod

(

 

20

5

4

        

0,

)

10

mod

(

 

10

5

2

=

=

×

=

=

×

=

=

×

=

=

×

 

 

 

 


Theorem 3.2: In the ring 
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, the divisors of zero are precisely the non-zero elements that are not relatively prime to m, that is, x is a divisor of zero if 
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Thus, x is a zero divisor if 
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Corollary to Theorem 3.2: If p is prime, then 
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These values are found by testing all the values in 
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 for x. Substituting in, we obtain
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Thus, x =1 and x = 5 are solutions.
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Cancellation Laws
Let R be a ring, and let 
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Theorem 3.3: The cancellation laws hold in a ring R if an only if R has no zero divisors.

Proof: 
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Definition 3.4: An integral domain  D is a commutative ring with unity 
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 that contains no zero divisors.

Examples of Integral Domains

The integers Z, the integers modulo p, 
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, where p is prime, and the real numbers 
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, are all examples of integral domains.

Examples of Rings that are not Integral Domains.
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Theorem 3.5: Every field F is an integral domain.
Proof: 
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Theorem 3.6: Every finite integral domain D is a field.

Proof: Let 
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Note: For a ring R, if 
[image: image113.wmf]R

a

Î

 and 
[image: image114.wmf]+

Î

Z

n

, then

[image: image115.wmf]4

4

3

4

4

2

1

K

 times

n

a

a

a

a

na

+

+

+

=


Definition 3.7: For a ring R, if there is a positive integer where 
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Example 1: What is the characteristic of 
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Example 2: What is the characteristic of 
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Theorem 3.8: Let R be a ring with unity. If 
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Hence, by Definition 3, the result follows.












█
Example 3: What is the characteristic of 
[image: image135.wmf]Z

Z

´

?

Solution:













█

Example 4: What is the characteristic of 
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Example 5: What is the characteristic of 
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Example 6: What is the characteristic of 
[image: image138.wmf]2

3

Z

Z

´

?

Solution:













█

Example 7: What is the characteristic of 
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Recall that the binomial theorem say that 
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Example 8: If R is a commutative ring with unity with characteristic 4, compute and simplify
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Solution: Recall that the binomial theorem says that 
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Hence, 
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Exercises
1. 
Find all solutions to the following equations.


a.
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b. 
The equation 
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c.
Find the solutions of 
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d.
Find the solutions of 
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2.
Find the characteristic of the given ring.


a.
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3.
Let R be a commutative ring with unity of characteristic 4. Compute and simplify 
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4.
Let R be a commutative ring with unity of characteristic 5. Compute and simplify 
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5.
Let R be a commutative ring with unity of characteristic 3. Compute and simplify 
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6.
Let R be a commutative ring with unity of characteristic 3. Compute and simplify 
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7.
Show that the matrix 
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 is a zero divisor in 
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8.
Prove that a unit in a commutative ring cannot be a zero divisor.
9.
An element of a ring R is idempotent if 
[image: image171.wmf]a
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exactly two idempotent elements.
10.
Show that the characteristic of an integral domain D must either 0 or a prime p. Hint: If 


the characteristic of D is a composite number mn, consider 
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