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Section 5: Divisibility in F[x], greatest common divisor, and the Euclidean Algorithm 

HW p. 14 # 1-6  at the end of the notes
In this section, we examine the divisibility of polynomials more closely and examine what is meant by the greatest common divisor of two polynomials.
Divisibility of Two Polynomials Over a Field

Recall the division algorithm for the polynomial ring
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Definition 5.1: Let F be a field and
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1. 
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Every divisor of a polynomial 
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, we require the greatest common divisor to be monic, that is, we require its leading coefficient to be 1. This assures that the greatest common divisor of two polynomials is unique. This is summarized in the following definition.
Definition 5.2: Let F be a field and 
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One method for finding the greatest divisor of two polynomials is to multiply the irreducible factors they have in common. We demonstrate with the following example.
Example 1: Find the greatest common divisor of the two polynomials 
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Solution: It can be verified that these polynomials have the following factorizations:
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The common factors of both polynomials are


[image: image60.wmf])

3

2

3

7

(

3

2

7

3

)

2

)(

1

3

(

2

2

+

+

=

+

+

=

+

+

x

x

x

x

x

x


Note that the 
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The Euclidean Algorithm for Polynomials in F[x]
To more efficiently find the greatest common of two polynomials, we can use the Euclidean Algorithm. The algorithm works similarly to how it works over the integers. Note that the last non-zero remainder may not be monic. However, by the greatest common divisor can be found simplify by factoring the constant from the leading coefficient of the last non-zero remainder. We state the algorithm as follows:
The Euclidean Algorithm

The Euclidean Algorithm makes repeated use of the division algorithm to find the greatest common divisor of two polynomials. If we are given two polynomials in 
[image: image64.wmf]]

[

)

(

 

),

(

x

F

x

g

x

f

Î

 where 
[image: image65.wmf])

(

deg

)

(

deg

x

g

x

f

³

, then if 
[image: image66.wmf])

(

|

)

(

x

f

x

g

, then 
[image: image67.wmf])

(

))

(

),

(

gcd(

x

g

x

g

x

f

=

, where 
[image: image68.wmf])

(

x

g

 is the monic polynomial obtained by factoring the leading coefficient of
[image: image69.wmf])

(

x

g

. If 
[image: image70.wmf])

(

|

)

(

x

f

x

g

/

, then we compute





[image: image71.wmf]0

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

1

1

1

2

1

2

1

3

4

3

4

2

3

2

3

1

2

1

2

1

1

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

-

-

-

-

-

-

-

x

r

x

q

x

r

x

r

x

r

x

q

x

r

x

r

x

r

x

q

x

r

x

r

x

r

x

q

x

r

x

r

x

r

x

q

x

r

x

r

x

r

x

q

x

g

x

r

x

g

x

q

x

f

n

n

n

n

n

n

n

n

n

n

n

M


The
[image: image72.wmf])

(

))

(

),

(

gcd(

x

d

x

g

x

f

=

, where 
[image: image73.wmf])

(

x

d

 is the monic polynomial obtained by factoring the leading coefficient of the last non-zero remainder 
[image: image74.wmf])

(

x

r

n

.
Example 2: Use the Euclidean Algorithm to find the greatest common divisor of the two polynomials 
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Example 3: Use the Euclidean Algorithm to find the greatest common divisor of the two polynomials 
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Theorem 5.3: For a field F, for any two polynomials 
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Fact: When executing the Euclidean algorithm equations,
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We can create a table to determine the 
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Notes

1. 
The quotients under Q and remainders under R are computed using the basic Euclidean 

algorithm process. The table is complete when 
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Example 4: Use an Euclidean Algorithm table to find polynomials 
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Example 5: Use an Euclidean Algorithm table to find polynomials 
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The previous results give the following Euclidean Algorithm Table:
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From the last row, we see that 
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The following is a corollary resulting from the above results.
Corollary 5.4: Let F be a field and 
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Note: Two polynomials 
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Exercises

1.
Use the Euclidean Algorithm to find the greatest common divisor of the given polynomials.
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2.
For each exercise for Exercise 1, assign a and b and generate an Euclidean algorithm table to find polynomials 
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For a field F, let 
[image: image207.wmf]]

[

)

(

),

(

),

(

x

F

x

h

x

g

x

f

Î

 

 

 and suppose 
[image: image208.wmf]1

))

(

),

(

gcd(

=

x

g

x

f

. If 
[image: image209.wmf])

(

|

)

(

x

h

x

f



and 
[image: image210.wmf])

(

|

)

(

x

h

x

g

, prove that 
[image: image211.wmf])

(

|

)]

(

)

(

[

x

h

x

g

x

f

.
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For a field F, let 
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